
N~ d
~~~.AO74 495 SRI INTERNATIONAL MENLO PARIS CA FIG 9/21 OH—LflC PROGRAMMER’S MANAGEMENT SYST EM . ADDENDUM I. USER’S GUTO——ETCII))

AUG 79 B L PARSLEY. II 6 LEHTNAN, S kAIII F3O602—77—C—0155
LASSIF lED RA DC—TR — 79—20 5—A DO—j NL 

fl IJ~~DU_ 
_U I

.Ii SQt~ 
_ _  

I~I_ _

U,
iflfl F4

__

U :_LS~E4 U- Nj



I t~ ~2& ~I2.5i v

~ 
OIt1~

I I.1
\ a __________

11111’ .25 IIIII~ .
0

MICROCOPY RESOLUTION TEST CH*T
NAT IO~1A1 BUREAU Of STA~ DARDS-I%3.~



_ _  
-

~~~~~~~~ ~
~~ RADC-TR-79-205, Add•ndum I

Final Technical Report 4
August 1979

~ ON-LINE PROGRAMMER’S
~ MANAGEMENT SYSTEM .

User ’s Guide to the JOVIAL Debugger
Augmentation Resources Center

Bruce 1. Parsley
Harvey G. Lehtman
Susan Kahn

APPROVED FOR PUSUC RELEASE; DISTRIBUTION UNUMITED J

D D C

/ B
C.,.

±1 ROME AIR DEVELOPMENT CENTER

~~ Air Force Systems Comman d
Griffiss Air Force Base, New Yor k 13441

79 10 01 0 01
-- - - --, -. - - -. -~~~~ —

1I.~~~ ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~

r

This report has been reviewed by the RJ*DC Information Office (01)
and is releasable to the National Technical Information Service (NTIS) .
At NTIS it will be releasable to the general public, including foreign
nations.

RADC-TR— 79-205, Addendum I has been reviewed and is approved f or
publication.

APPROVED

RAYMOND A. LIUZZI
Project Engineer

APPROVED :

WENDALL C. SAUMAN , Colonel , USAF
- -

Chief , Inf ormation Sciences Division

—~~~~~~9/

~~~~~~~~~~~ J”~ ?~4e.~z~~~_FOR ThE COMMANDER

JOHN P. HLJSS
Acting Chief , Plans Office

11
If your address has changed or if you wish to be removed from the RADC
mailing list , or if the addressee is no longer employed by your organi~a—
tion, please notify RADC (ISlE), Griff iss APE NY 13441. This will assist
us in maintaining a current mailing list.

Do not return this copy. Retain or destroy.

L. ~~~~~~~~~~~~~~~~~~~~~ _ _



,------ - — -.— - ..-, - 
~~~~~~~~~~~~~~~~~~~~ - ? ~~~~~~~~~~~~~~~~~~~~~~~~~~~ — . —  .—.—.- -——-.— —,--—— .—--- — - . -.- -—- -— — ‘ -:_____ _____-- 

UNCLASSIFIED
SECUR IT SS IFICATI O N OF THIS PAGE (N~..n Dais Enl.r.d)

~~~~~ REP Q~T r~ rflt%~t9ATION PAGE BEFORE COMPLETING FORM

A~DL~ 
_J ~~i. GOVT ACCESSIO N NO. 3- RECiPIENT’S CATALOG NUMBER

RAD C TR- 79— ~~~~~~~~~~~~~~ ~I.J j  
________________________

i~~~~~~~~~~~~~~~~~~~~~~~~ 2~~~~~ 
(11 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

_ _ _ _ _ _ _ _  
.PORT N UMBER

1 .LLT....,..~.., ..—~ & CqNT~~A CT OR GR~~~T,,~~UNBER(.)

j  Bruce L.fPar i~~~~~ ( 15 F3fl~ø~_ 77_c_~~~J( C  Harv ey GJLeh t ~~~~

1 PrRIr O~~MING ORdANIZAT IO N NAME AND ADDRESS tO . PROGRAM ELEMENT, PROJECT , TASK- EA 6 WORK UNIT

~~~~~~~ 

I I. CONTROLLING OFFICE NAME AND ADDRESS .“
~

Rome Air Development Center (ISlE) ,~ / Augi. ~i79

Griffiss AFB NY 13441 ‘ir N U M B E R oF PAG ES

14. MONITORING AGENCY NAME & A OO RE SS OI dilfee.ni Control tln4 Otfic.) IS. SECUR ITY CLASS. (of 1k!. •.pon

Same / ~~ - ,
UNCLASSIFIED

f IS;. DECLASSIFICATION DOWNGRADING

Ia. DIs rRIeuTIo N STATEMENT (of rhi . R.port)

Approved for public release; distribution unlimited.

Il. DISTRIBUTION STATEMENT (ol lhe ab.l,aci .nter.d in Block 20, II different from P.po,l,I

Same

lB. SUPPLEMENTARY NOTES
-—

RAD C Project Engineer: Raymond A. Liuzzi (ISlE)

!9. KEY WORDS (Conhinu. on r.v.rae aid. II n.c.aiary and id.n tify by block numb.,)
Debugging System SoftwareOn—Line JOVIALSoftware Engineering -

Programm ing Environments CompiLers
Computers

~4 ABSTRACT (C’ofll i nua on rev.ra. aid. if nice.,.,)’ and ld.nlffy by block number)
his report is composed of studies tha t have been conducted to develop the NLS

system as an on—line programming environment and to provide an on—line JOVIAL
interactive debugger with the capabilities to debug JOVIAL language programs.
The fina l report contains several design additions to the NLS systmm to create
an on—line programming environment. A JOVIAL User ’s Guide prepared in
Addendum Technical Report I provides an extensive set of commands for using the
JDAD Debugger. Addendum Technical Report II provides a generalized approach to
debugging and describes the NLSINSW Do—All Debugger (DAD).~~

DD ,~~~~~~,, 1473 UNC1ASSIF~~D
SECURITY CLASSIFICA TION OF THIS PAGE (When Dali Enlerad)

“4 ’~-Jc ~ -~‘~L
_ _ _ _ _

_ _ _ _ _ _ _ - _

.-.--. ..

~~~~

. 

~~~~~~

.. — ---V ~~ — -i- -- - ~r~~~~ --~----- - -‘ - - - -- —

UNCLASSIFIED
S E C U R I T Y CLASS I F ICA T ION OF 1141$ PAGE(Whw Dali Entered)

‘I’

I

UNCLASSIFIED
-

SECURITY CLASSIFICA TION OF THIS PACE(Whs n Data Ent.e 4)

_ _

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

_

~~~~~~~~~~~~~~~~~~~~~~~

‘

~~~~ 

jA~~~~~~~~~~~~~~~~~

SKO 1 —May—79 15: 145 147237
Preface

Preface

This document is the User ’s Guide to the JOVIAL debugger
(JDAD). JDAD is an intera’-;tive debugger that can be used to
debug JOVIAL programs running on the TENEX or TOPS—20
operating system. It is based on DAD , a multi— language
interactive debugger that runs on the TENEX or TOPS—20
operating system. DAD has a modular structure. The Frontend
of DAD consists of a command language interpreter and a
grammar. The grammar is a data structure that specifies the
user interface to the debugger. The command language
interpreter follows the grammar and interacts with user. The
Sackend of DAD consists of three separate modules: a
dispatcher module , a language module and an an operating
system module. The JOVIAL debugger was made by replacing the
language module (LM) module in DAD and modifying the DAD
grammar .

JDAD was written specifically for debugging JOVIAL language
programs. It can interpret all JOVIAL data types , ordinary
JOVIAL tables , the JOVIAL procedure call and return mechanism ,
the walkback data , an d J O V I A L  parameter lists. It can find
the symbol table in a standard JOVIAL program and consequently
knows of all external symbols defined in a JOViAL program .

The current implementation of JDAD could be expanded to
possess more knowledge about the JOVIAL compiler in the
future. For example , it would be possible to include code in
JDAD to process the ISD (internal symbol dictionary ) produced
by the JOVIAL compiler. This would greatly increase JDAD ’s
knowledge of the JOVIAL program being debugged . It would
allow JDAD to determine JOVIAL instruction boundaries and have
complete knowledge of all data structures.

CESSIOR for 
- 

p

NTIS White Section
DCC &ff Section 0
UNANNOUNC ED 0
JUSTIFICATIO$

BY
ms1~BuTI~/AYALAarLITT ~U(S

D~st. AVAIL and/cr SPECIAL

IA~~~H
Users ’ Guide to the Jovial Debugger i

- - -- ‘.. ‘n~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~


‘I

SKO 1 —May—79 15:45 147237
Table of Contents

Table of Contents

Syntax Conventions Used In This Document
Concepts 6

Entering and Leaving IJDAD 5
P rocess es 8
Character Sets and Generic Functions 8
User input and Debugger Output 11
Frame 13
Address Lists 114

Discussion 1*
Address List Terminators 15
Formal Definition 17
Semantics 19
Assigning To Address Lists 23

Two Special Characters 214
Command Summary 25

Debug Command 25
Done Command 26
Quit Command 27
Interrupt Command 28
Wheel Command 29
Status Command 30
Comment Command 31
Character Command 32
Input Command 314
Typeout Command 35
Symbol Command 36
Breakpoint Command 38
Continue Command 143
Free Command
Define Command 146
Display Command 148
Find Command 50
Mask Command 53
Memory Command 5~4
Output Command 56
Print Command 57
Type Command 59
Value Command 60
Speed Command 61
GFC •BSLASHCHAR Command 62
GFC ‘EQUALCHAR Command 63
GFC •EXCMARKCHAR Command 64
GFC •LSQUARECHAR Command 65
GFC •QMARKCRAR Command 66
GFC •SLASHCHAR Command 67
GFC ‘LARBOWCHAR Command 68
GFC ‘UPARROWCHAR Command 69

User s’ Guide to the Jovial Debugger
ii

p
SKO 1 —May— 79 15: 145 147237
Table of Contents

GFC ‘LFCHAR Command 70
GFC ‘TASCRAR Command 71
GFC ‘POUNDCHAR Command 72
Common Rules 73
Selectors 77

Expression Evaluation 80
JOVIAL Tables 82
Single Stepping 83

F Appendix I — Alphabetical List of Commands , Rules , and
Selectors 814

Commands 814
Ru l e s 87
Selectors 88

Users ’ Guide to the Jovial Debugger , i i i

_
-~ ‘

-— I

an-

SKO 1—May—79 15: 145 47237
General Information About Commands

General Information About Commands

General Format

JDAD commands all have a similar form; most commands begin
with a verb followed by a noun or by typed in text. For H
example , the command verb “Find” may be followed by one of’
two nouns , “Content ” or “Reference ” .

Command Recognition

JD A D ’ s command recognition mode minimizes the number of
characters the user needs to type and echos the full
command word as soon as it is recognized. For example ,
JDAD recognizes the letter “f” as the command word “Find”;
as soon as JDAD recognizes the command word , it shows the
entire word . Most of the time , JDAD will recognize a
command word after the user types the first letter;
however , sometimes more than one command word starts with
the same letter. JDAD will recognize the most commonly
used altenative by its first character. The other
alternatives may be specified by typing a space and then
the one or two letters needed to disambiguate the
conflicts.

Prompts and Noise Words

JDAD uses prompts to indicate to the user what it is
expecting the user to type ; in general , a prompt is one or
more uppercase letters , followed by a colon.

The JDAD herald followed by the prompt for a command word ,
“JD AD C:” , indicates that OJDAD is waiting for the next
command . JDAD is the debugger herald and “C:” is a prompt.
Once the user has typed part of a command , .JDAD will
respond with the next appropriate prompt . For example ,
once the “Find” part of the Find command has been shown ,
the user will see “C: ” . In this case the “C” stands for
“command word” and the user must reply with a command word .
Fo r exa mp le , the user may type “r” for the noun
“Re ferences” The Other letters are used in prompts
include: “T” , which means type some text; “OK” , which
m eans type <OK> ; “OPT” , which means type <OPT>; and “RPT” ,
which means type <RC> . (The meanings of these special
characters are discussed below.) A slash between letters
in a prompt , it means that the user has a choice. For
exam ple, “C/OK:” means that the user can type either a
comman d word or <OK>.

Us ers ’ Guide to the Jovial Debugger

-~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ‘

_ _
- -~~~~~~~~~~

- — -.-- --—- -—-., .— .-
—~~~~‘.- ‘.~~.-‘---- r ’~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
‘III ~

SKO 1 —May—79 15:45 147237
General Information About Commands

After the user types “fr ” for “Find References ” , the user
will see the word “to ” in parentheses following the command
word “References ” . This is a “no ise word” . No ise words
provide extra information to help the user to understand a
command . In this case , “ (to)” means that the user now has
to specify a value to which references should be found .

Control Characters

Many control characters have special functions in JDAD .
Some keyboards have function keys for the control
characters. The table below , gives the usual keyboard
label for each function key used by JDAD , its function in
JDA D and the equivalent control character.

Notation Function Equivalent

(BC> Backspace character <CTRL—A> or
<CTRL—H>

Backspace word <CTRL—W>

<OK> Command confirmation <CTRL— D>

<CD> Command delete <CTRL—X>

<OPT> Option <CTRL—U>

<RC> Repeat command <CTRL—B>

Confirming with <OK>

To tell JDAD that a command or part of a command is
finished , or to indicate that a typein is complete , the
user types <OK> . At the end of a command the user will
often be prompted to type <OK> with an “OK :” prompt ; in the
middle of a command there is a choice of adding another
command word or typing <OK> to end the command , the user
will see a “C/OK:” prompt. To type <OK> at a typewriter
terminal that does not have an OK key, the user presses the
k ey labeled “ R E T U R N ” . When an <OK> is typed , the user will
see an exclamation point (I).

Optional Alternatives

There are places in JDAD commands where the user has
optional choices. These optional command paths are
accessed by hitting the <OPT> function key (or its $
equivalent control character , < CTRL—U>.)

Us ers ’ Guide to the Jovial Debugger

2 —

~~~~ — -. ., ,ua,~~ -— ~~~~~~~~~~~~~~ .___i__ __~._ _._ _ _ 
- ---- — ~_ _

__
~_____._ -_

SKO 1 —May—79 15: 145 147237
General lnformation About Commands

Canceling a Command

<CD> is used to cancel a command . <BC> is used to erase
only the last command word that has been typed .

Syntactic information : Question Mark

Any time while using JDAD (except in the middle of typing
text), a question mark can be used to get a list of command
words or of all the things that can be done next. When
typed after a “C: ” prompt , question mark shows all the
command words that JDAD will recognize at that point. For
example , if the user types “?“ after “JD AD C:” , the user
will see a list of all the command words that begin JDAD
commands. One of’ these words is “Find” ; it the user types
“f” to begin a Find command and then types “?“ after the
“C:” prompt following “Find” , the user will see a list of
the command words that can follow Find .

In the l i s t of command words , the symbol “(>“ preceding a
command word means that a space must be typed before that
command word.

After the list of command words has been shown , the user
can type a character to begin one of them; the command will
continue as if the question mark had not been used .

At some steps in commands , JDAD is waiting for the user to
type in some text or do something other than begin a
command word. In this case , question mark will show what
JDAD expects by listing brief instructions that explain the
choices. The user can then follow one of ’ the instructions
or type <CD> to cancel the command .

Users ’ Guide to the Jovial Debugger 3

_____ -~~~~~~~~
. --—--——

I ::~~ _ i__
~ _ _

— - - — - - - --- -
~~~
- - - -—-.-—‘---—i--~ 

—- . -.—-“-- ‘ - .-- 

~~~~~~~~~~~~~~~~~~ . -

I

SKO 1—May— 79 15:~45 147237
Syntax Convention s Used In This Document

Syntax Conventions Used In This Document

With the exception of’ the formal definition of an address list
(which uses a modified BNF), the following syntactical
conventions are adhered to in the command summaries :

Command words appear with their first letter in uppercase
and the rest of the word in lowercase. When a generic
function character (discussed below) is a command word , it
will be surrounded by double quotation marks (“ ...“) .

Noise words appear as lowercase words enclosed in
parentheses.

Alternatives (or paths) for a rule or command appear as a
list under the rule or command .

The end of a command or rule is indicated by a colon (:).

An uppercase word preceded by an at sign (
~~

) is a reference
to a rule described elsewhere .

An uppercase word preceded by an uparrow () 15 a reference
to a selection entity. Selection entity types (text ,
character , etc.) are listed in a separate section .

An uppercase word preceded by an asterisk (I) refers to
that character currently serving the generic function
(discussed below) specified.

An uppercase word not preceded by an at sign or up arrow is
a Frontend prompt. These are described under the general
information on commands.

Angle brackets (<)) are used to iriclose single character
keystrokes (e.g. <LINEFEED> refers to hitting the linefeed
key on a terminal).

Users ’ Guide to the Jovial Debugger
4

- ~~~ ,‘
SKO 1—May —7 5 15 :145 ~47237

C o n c e p ts
E n t e r ing and Leav ing J D A D

C o n c e pt s

Enter ing and Leaving JDAD

The following discussion is relevant to the current release
of the debugger and may change in the future.

To use the J O V I A L d e b u g g e r (J D A D) , r u n t he T E N E X s u b sy s t e m
J D A D f rom the d e b u g g e r d i r ec t o r y . The p a r t i c u l a r d e b u g g e r
directory is dependent on the host on which the user is
runn ing . For example , currently on the TThSHARE host
O F F I C E — 2 t h e J D A D s u b s y s t e m can be accessed by t y p i n g
<SUBSIS>JDAD to the TENEX EXEC.

When JDAD starts , it will do some initialization and f-hen
prompt you with the JDAD herald followed by the prompt for
a command . JDAD ’ s command language is context dependent ,
and until you have specified a program for JDAD to debug ,
only a few glo bal commands will be available. Probably the
mos t u s e f u l com~nand at th is time is the Debug command in
which you specify wh ich program you wish to debug . After
spec i f y ing a pro g ram , the full complement of JDAD’s
commands will be available. At this time you may set
breakpo ints where JDAD will suspend execution of programs
an d await further commands. This allows you to check out
your program section by section . Either before starting
execution or during breakpoint stops , you may examine and
mod ify the contents of any location in core , e x e c u t e oth er
instructions , sea r ch f o r r e f e r e n c e s to par ti c u l a r sym b ols
and perform other tasks to aid in the debugging process.

When you are ready to start execution , g ive t he Cont inue
command and execution will start at the program ’s ma in
entry vector locat ion. (If you do not wish to start at the
ma in entry vector location , you may use some of the
sub-commands of the Continue command.)

It is a lso po ss ib le to sp l ice in J D A D a f t e r a J O V I A L
program has begun execut ion. To do this , type Control—C .
Then type JDAD to the TENEX EXEC. JDAD will respond with
the the JDAD herald followed by the prompt for a command .
In this case , the full complement of JDAD’ s command will be
available immediately. JDAD will operate in the same
manner as if it had been started directly from the TENEX
EXEC except that if you give the Continue command with no
sub—c ommands , execution will resume at the instruction that
was about to be executed when the Control—C was typed.

Users ’ Guide to the Jovial Debugger 5

_ _ _ _ ~~~~~~~~~~~~~~

SKO 1—May—79 15: 145 147237
Concepts

Entering and Leaving JD A D

To get back to JDAD later (in ease you forgot to set any
breakpoint s , or your program is looping, etc.), use the
(CTRL—L> facility. Control— L is a deferred
pseudo—interrupt (PSI), which means that you won ’t actually
enter the debugger until the control—L is read . If you
wish to enter the debugger immediately, type 2 control—La
without any intervening typein. To continue execution of
what was happening before you re—entered JDAD use the
Continue command.

When you are through debugging , you may either enter a
control—C or use JDAD’s Quit command . If you are through
debugging a specific (instance of a) program and wish to
debug (a different instance of or) another program , use the
Done command which will ask you for a new program to be
debugged after removing up the previous program from your
address space.

User s’ Guide to the Jovial Debugger

6

~
- -—-

~~~

~~~~~~~~~- ~~~~~~~ ~~~~~~~~~~~~ _ _


‘~~~~~~~~- ~~• -‘. — ~~~~~~~~~~~~~~~~~
—

~~~~~~~~~

SKO 1—May—79 15: 445 147237
Concepts

Processes

Processes

The debugger is designed to be a multi—tool , multi—process
debugger. This means that a JOVIAL program is allowed to
contain any internal process structure it desires , and the
debugger is able to debug more than one process. The JDAD
commands often use the term “tool” and may require users to
specify tools as objects of commands. A tool is a
collection of ’ one or more interacting, collaborating
processes. Thus a typical JOVIAL program is an example of
a tool. Process is being used in the conventional computer
science meaning of the word : it has its own virtual
programming environment including its own Program Counter
and stack environment.

To handle a multiple number of processes the debugger uses
the concept of an Internal Debugger Handle (1DM). An 11)11
is an unique (per debugging session) positive integer.
Each process that the debugger knows about is assigned an
1DM . A user may always refer to a process by its 1DM , and ,
in some commands , if the process is the top process , the
user may also refer to it by the the program name.

A process is assigned an 1DM when the debugger first learns
of the process. When the debugger is first pointed at a
p rogram , it will determine the process structure for that
program and assign an 1DM for each process. Thereafter ,
the debugger will monitor the program ’s execution , and will
assign new IDEs to newly created processes at the time they
are created .

At any time , the debugger can be pointed at one , and only
one , process. This process will be referred to as the
current or active target process. This does not mean that
the debugger can not know about more than one process , nor
that the debugger is not capable of varying the current
target process over time . It just means that at any
instant , all commands are refering to the current process
(with the obvious exception of the Debug command to point
at another process). During a debugging session , when a
breakpoint is encountered , the process containing the
breakpoint will automatically be made the current target
process , regardless of which process was current
previously.

Users ’ Guide to the Jovial Debugger 7



_ _

SKO 1—May—7 ~ 15: 145 147237
- 

•. C o n c e p t s
Character Sets and Generic Functions

Character Sets and Generic Functions

Since the debugger on which JDAD is based is designed to
support a number of different languages , and since most
languages do not use the same character sets , it is not
possible for the debugger always to use the same character
to mean the same thing in a command . For example , a
semi— colon character may be a valid character in an
identifier in some languages , and it cannot therefore be
used to separate address ranges (discussed below ) in an
address list. Therefore the debugger has adopted the
concept of a generic function and a generic function
character (GFC). A GFC is that character which is
currently serving a specific generic function.

For documentation and communication purposes , it is
convenient to have a generic name to refer to the specific
character that is currently serving a particular generic
function. Thus , while the specific character may change ,

— it can still be referred to by its generic name . The
generic name for a character is the uppercase word of the
default generic function symboli~ name preceded by an
asterisk , e.g. the generic name for the GFC that is
currently serving the generic function of an address list
delimiter (whose default is a semi—colon ) is
‘SEMICOLONCHAR.

The current values of each GFC can be determined by using
the Character (set) Display command .

The symbolic names ant: the meaning of these generic
functions are as follows . The default character used in
IJDAD for a generic function will appear under the meaning
column delimited by a left angle bracket (<) and a right
angle bracket followed by a semicolon c > ;) :

generic function
symbolic name meaning of character

pluschar <+>; the user is using this character as
the arithmetic addition operator

minuschar <— >; the user is using this character as
the arithmetic subtraction operator

timesehar <I> ; the user is using this character as
the arithmetic multiplication operator

U s e r s ’ Guide to the Jovial Debugger

8

3 -:

~

--— .

~

- , - -

~ 

- ~~-— - - -



_ —

SK O 1 — M a y — 79 15: A45 147237
Concepts

Character Sets and Generic Functions

dividechar < ‘ > ;  t h e  user  is using this character as
the arithmetic division operator

lparenchar <0; the user is using this character as
the arithmetic left grouping character

rparenchar <>>; the user is using this character as
the arithmetic right grouping character

blockchar <&>; the user is using this character as
a block delimiter; e.g. the string: stringl&string2
should be interpreted as symbol string2 in block
string i if & is the current BLOCKCMAR

escapechar <ALTMODE or ESCAPE>; the user is using
this character to mean interpret the next character
as a debugger builtin variable; e.g., ESCAPECHAR
followed by a ‘Q (or ‘q) refers to the builtin
debugger variable which has the value of the most
recently displayed cell

lmchar <%>; the user is using this character to
mean interpret the next character(s) as a language
module builtin variable or construct ; there are
no language module builtins in the current
implementation of JDAD

commachar < :>; the user is using this character as
an address range delimiter to separate the two
elements of an address range

• semico].onchar <;>; the user is using this
character to separate address ranges within address
lists

larrowohar <..); the user is using this character as
the debugger assignment character

tabchar <tab>; the user is using this character
to mean display the cell addressed by the most
recently displayed cell

poundchar <#>; the user is using this character to
mean back up to the previous displayed cell

lfchar <LINEFEED>; the user is using this
character to mean display the next sequential eel].

Users ’ Guide to the Jovial Debugger 9

I:~ ~: _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _



V~ 
i’-~

•
~ 

-

~~~ 

— —- ... ---- -

~

— —
-

~~~ 
-
~ 

_ _ _

‘ IL

SKO 1—May—79 15 :145 147237
- •. Concepts

Character Sets and Generic Functions

up ar rowc har <
a >; the user is using this

character to mean display the previous sequential
cel l

bslashchar <\>; the user is using this character to
mean display an address list in string mode; in JDAD
this
means as a JOVIAL character variable with length

equalehar < fl >; the user is using this character to
mean display the value of the input address list

excmarkchar <I> ; the user is using this
character  to mean
display cells as ascii values

lsquarechar <1>; the user is using this
character to mean display an address list
numerically

qmarkohar <?>; the user is using this character
to mean tell where symbols in an address- list are
defined

slashchar </>; the user is using this character
to mean display an address list symbolically

Users ’ Guide to the Jovial Debugger

- 

10 

~~~~~~~~~~~~~~~~~~~~ -- - S. - -


—--.- —

~~~“ i - ~~~~~~
- ,-‘- 

—.-‘

~~ 

- •. —

F!  - -__ _

SKO 1 —May—79 15: 145 147237
Concepts

User Input and Debugger Output

User Input and Debugger Output

All commun ication with the debugger is governed by the
values of 14 records: the permanent and current input mode
records , and the permanent and current output mode records.
At the beginning of most commands (exceptions discussed
below) the permanent input and output mode records are
copied to the current input and output mode records , and
thereafter the command is governed by the value of these
current records.

For example , all numbers entered by the user will be
interpreted as being numbers in the base specified by the
current input mode radix , and all numbers displayed to the
user will be formatted to conform to the current output
mode radix. Two exceptions to this treatment of numbers
are discussed below.

The values of the permanent input and output mode records
can be displayed via the Typeout (node) and Input (mode)
commands.

Several commands provide for modifying the current input
and/or output mode records for a specific instance of a
command . These ephemeral values are then lost at the start
of the next command except in the cases discussed below .

There are some commands that consist of a single GFC , e.g.,
the assign command as entered by ‘LARROWCHAR. These
commands will use the current values of the input and
output mode commands at their invocation , i.e., the values
of these records that were in effect for the previous
command.

The current input mode radix and current output mode radix
govern the evaluation of numbers with the following two
exceptions:

When specifying or viewing these radixes , the radix will
always be interpreted as being decimal numbers. Thus one
may specify a change to input or output radix of the value
10 by typing 10 even if the current input radix is some
other value .

When specifying a JOVIAL table definition in the Define
Ta bl e comman d , all numbers will be treated as decimal

Users ’ Guide to the Jovial Debugger 11

• -

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  - --pt 



_____ -— 
-~~~~~~ -•-.-—--~~~ , - --- ,-.--— .•~~- — - --—--- “

~
-

~
--

~~~~ 
,- —

~~~~~~~~~~~~~ 
— 

-

~~

SKO 1 —May—79 15: 145 47237
Concepts

User Input and Debugger Output

numbers. H owever , when a JOVIAL table or table item is
referenced in an address list , all numbers will be
interpreted according to the current radix mode.

Users ’ Guide to the Jovial Debugger

12

H

• 

- --.•-. —

_______  __J_ - ~~~~~- -
~~~ ~~~~~~~~~ - ‘• ~~~~~~~~~~ - - -

~~~~~~~~~~
- - , -

~~~~
-

-~

r :~:
SKO 1 —May—79 15: 145 47237

Conce pts
Frame

Frame

On the PDP— 1O , the JOVIAL procedure calling mechanism is
implemented using a stack. Each procedure call causes an
entry to be made on the stack. The return from a procedure
causes the entry to be removed from the stack. This entry
points back to the word following the call instruction.

The information that can be determined from this entry on
the stack is called the “frame ” for the called procedure.
The frame contains the names of the called and calling
procedure , the contents of the parameter list , the values
of the parameters and the return location. When the
calling procedure has been compiled with walkback data , the
frame also contains the line number of the call.

A specific register is used by JOViAL to keep track of the
last entry on the stack. JDAD knows which register is used
and thus can determine the last procedure called , i. e.,
the procedure currently executing.

The JDAD concept ‘current frame ’ refers to the most
recently displayed frame or the frame on the top of the
stack when a breakpoint is hit or a Control—L is typed .

When displaying frames in JDAD via the “Display ” command it
is important to remember that the first entry on the stack
(oldest entry) is the bottom of the stack and the
corresponding frame is referred to by the FE address
element. The last entry on the stack (newest entry) is the
top of the stack and the corresponding frame is referred to
by the FT address element. When a parameter or return
location is included in an address list , JDAD interprets
this to be the parameter or return location for the current
frame : the particular frame (first , last , or somewhere in
the middle of the stack) which was last accessed by the
user.

U sers ’ Guide to the Jovial Debugger 13

L ~iJ

-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

SKO 1—May—79 15:445 447237
Concepts

Address Lists

Add ress Lis t s

• Discussion

An address list is the basic manner in which a user
refers to elements in the current target proce ss .
Basically, an address list is composed of one or more
address ranges; and an address range consist s of one or
two address range elements (AREs). The character that
term inates an add ress lis t , while it may modify the
functional use of the address list , is not a part of the
address list itself.

I

Users ’ Guide to the Jovial Debugger

14

— —~~~~~-~~~~ - — - 
—

~~~~~~~~~~~

—

~~~~~~~

-

~~~~~

- - -

~~

- ~~~


~~~~~~~~~~ 
~~~~W’ 

~~i

SKO 1 —May—79 15:145 47237
Conce pts

Address Lists - Terminators

Address List Terminators

The user may terminate an address list with a number of
different characters , depending on which command is
being specified . The terminating character is NOT a
part of the address list. The following are the generic
characters , with their default character values and
their meanings , that may be used to terminate various
address lists:

generic character
terminator meaning

‘BSLASHCHAR the user wishes to see the
address list

displayed in string mode (in JDAD
this means

as a character variable with size
of 1)

‘EQUALCEAR the user wishes to have the value
of the input

address list displayed to him

‘EXCMARKCMAR the user wishes to see the
address list

displayed in ascii mode

‘LARROWCHAR after each line of the address
list is

displayed , the user wishes to
ass ign a new

value to the just displayed
entity

‘LFCHAR after displaying the current
address list , the

user wishes to see the cell (or
data

structure) whose address is one
g r e a t e r th an

the last displayed cell. (or data
structure)

•LSQUARECHAR the user wishes to see the
address list

displayed in numeric mode

User s ’ Guide to the Jovial Debugger 15

_ _ _ _ _ -~~-~~•- - ~~~~ --
- -• , —-- ---~~~—-_ _ _

L -—
~~~
- - - - • -•

.
- - -

.
-•--•

~~~~~~~

• - - - • - —

~~~ 

- -

— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -• ,~~•.. - 



—~ w~~ -~~ - - 
..

~
— 

~~~~— - - 

-
~~
---—----- - —-- -- -

SKO 1—May—79 15:45 147237
Concepts

Address Lists — Terminators

‘POUNDCHAR after displaying the current
address list , the

user wishes to see the cell (or
data

structure) that was displayed
immediately

prior to the last cell (or data
struc ture)

‘QMARKCHAR the user wishes to find out where
the symbols

in the entered address list are
defined

‘SLASHCHAR the user wishes to see the
address list

dispAayed in symbolic mode

‘TABCHAR after displaying the current
address list , the

user wishes to see the cell (or
data

structure) addressed by the last
displayed cell

•UPARROWCHAR after displaying the current
address list , the

user wishes to see the cell (or
data

structure) whose address i.~ one
less than the

last displayed cell (or data
structure)

Users ’ Guide to the Jovial Debugger

16

-I ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -——-.—~~~~~~~~~~~~~~~~
--- - - - -~~ — ~~ ~~

-.-- —
~~~

-.-
~~~~~~~~~

—
~~ ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~

- -__ .l.- .
~~

.—— —— -•---— .• —— - ---— - - —•-‘ —-—.—- -—- •—-- -—— —— -•~
—— • . . • -..~~. L •

SKU 1— M a y — 7 9 15: 145 47237
Concep ts

Addre ss Lists — Formal Definition

Formal Definition

ADRLIST : = A DRRANGE (•SEMICOLONCHAR ADRL1ST] / NULL
AD RRAN GE := RANGE / BUILTIN
BUILTIN :=

FRAME / LOCAL / PARAM / PARAML IST / MEM / PLIST / JFN
/ ERR

E R R := ‘ESCAPECHAR (‘E / ‘e)
JFN := AJFN / RJFN
AJFN :: ‘ESCAPECEAR (‘J / ‘j)
RJFN :: AJFN NUMBER (‘COMMACHAR AJFN NUMBER]
PLIST := ‘ESCAPECHAR (‘Z / ‘z)
hEM :: AMEM / EMEM
AMEM := ‘ESCAPECHAR (‘N / ‘m)
RMEM := AMEM NUMBER E’COMMACHAR AMEN NUMBER]
PARAM := ‘ESCAPECHAR (‘P / ‘p)
PARAMLIST :: •ESCAPECHAR (‘P / ‘p) (‘L / ‘1)
LOCAL := ‘ESCAPECHAR (‘L / ‘1)
FRAME :: FSPEC (‘COMMACHAR FSPEC
FSPEC :: FF / FR / FO / FT / FE / Fit -

FF := ‘ESCAPECHAR (‘F / ‘f)
FR :~ ‘ESCAPECHAR (‘F / ‘f) (‘+ / ‘ —) I NUMBER)
F0 := ‘ESCAPECHAR (‘F / ‘f) (‘0 / ‘o)
FT := ‘ESCAPECH AR (‘F / ‘f) (‘T I ‘t)
FE := ‘ESCAPECHAR (‘F / ‘f) (‘B I ‘b)
FA ‘ESCAPECHAR (‘F / ‘ f) ‘# N U M B E R
TABLESPEC := SMPLIDENT DIMENSIONLIST
ITEMSPEC 1= SMPLIDENT ‘BLOCKCMAR SMPLIDENT DIMENS1ONL-IST
DIMENSIONLIST := ‘((DIMENSIONRANGE / D1MENSIONRANGE ‘ ,

DIMENSIONRANGE) ‘)
DIMENSIONRANGE :: C ’ ’ / NUMBER ‘ : NUMBER / NUMBER)

see the section on JOVIAL Tables for more details
RANGE := EXPRESSION C ‘COMMACHAR EXPRESSiON)
E X P R E S S I O N

expressions are defined and discussed in a separate
section

IDENT := BLCKIDNT / SMPLIDNT / NUMBER / BLTNTRM /
M E T A I D N T
BLCKIDNT := SMPLIDNT ‘BLOCKCHAR SMPLIDNT
SMPLIDNT

a string composed of valid identifier characters for
the current language

METAIDNT :: •LMCHAR SMPLIDNT
B L T N T R M 1: BA / BB / ELN / EPN / BQ / BR / BY
BA :: ‘ESCAPECHAB (‘A / ‘a)
BE :: ‘ESCAPECHAR (‘B / ‘b) NUMBER
BLN := ‘ESCAPECHAR (‘L / ‘1) NUMBER
BP N :: ‘ESCAPECHAR (‘P / ‘p) N U M B E R
EQ :~ ‘ESCAPECHAR (‘Q / ‘q)
BR := ‘ESCAPECHAR (‘B / ‘r)
BY :: ‘ESCAPECHAR (‘Y / ‘y)

Users ’ Guide to the Jovial Debugger 17

. . . --i. • i __~~~~~~~~~ • i~~ -_ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~T~ -Ii~ -

-

SKO 1 —May—79 15:45 147237
4 Concepts P

- Address Lists — Formal Definition

NUMBER := a string of digits in the current input mode
radix

Users ’ Guide to the Jovial Debugger

18

LJ_~~~JT1_ ~~~~~~~~~~~~~~~~~~~~~~~

SKO 1—May—79 15:45 ~47237
Concepts

Address Lists — Semantics

Semant ics

ADRLIST :: AD RRANGE C ‘SEMICOLONCHAR ADRLIST] / NULL

the NULL address list is equivalent to entering the
last input address list

ERR := ‘ESCAPECHAR (‘E / ‘e)

used to show the last operating system error incurred
by the current target process

A JFN := ‘ESCAPECHAR (‘J I ‘j)

used to display an indication of the files being used
(listed by their JFNs ; equivalent to the TENEX
FILSTAT command and the TOPS—20 INFORMATION FILES
command.)

RJFN := A JFN NUMBER [- ‘COMMACHAR AJFN NUMBER]

used to display an indication of names and statuses
of files being used for file numbers NUMBER (to
NUMBER]

PLIST :: ‘ESCAPECHAR (‘Z / ‘z)

used as a shorthand notation to be equivalent to the
previously typed in address list

AMEM := ‘ESCAPECLIAR (‘N / ‘m)

used to show the utilization of the address space of
the target process. Equivalent to the TENEX MEMSTAT
command .

RMEM :: AMEM NUMBER [‘COMMACHAR AMEN NUMBER]

used to show the utilization of the address space of
the target process for pages NUMBER Ito NUMBER]

PARAM :~ ‘ESCAPECHAR (‘P / ‘p)

used to show the formal parameters of’ the current
frame

Users ’ Guide to the Jovial Debugger 19

~~~1 —  — - -. — - - — — — — — - -

SKO 1 —May—79 15:45 47237
C o n c e p ts

Address Lists — Semantics

PARAMLIST :~ ‘ESCAPECHAR (‘P / ‘p) (‘L / ‘1)

used to show the formal parameter list of the current
frame

L O C A L  := ‘ESCAPECHAR (‘L. / ‘1)

used to show the local variables of the current frame

FF := ‘ESCAPECHAR (‘F I ‘f)

FF refers to the current frame. the current frame is
the most recently displayed frame or the  f r a m e  on t h e
top  of t he s tac k a f t e r  t he de bugger  is e n t e r e d

FR :: ‘ESCAPEC }IAB (‘F / ‘f )  ( ‘ + / ‘ — )  C N U M B E R  ]

if NUMBER is not specified it defaults to 1; no
spaces may precede NUMBER; NUMBER specifies the
number of frames to move relat ive to the current
frame; e.g. if ‘$ is the current ‘ESCPAECHAR , and ‘ ,

is the current ‘COMMACHAR , the FRAME: “$ft , $f—2”
would display the frame on the top of the stack , and
the next two frames towards the bottom of the stack
in the control thread .

FO :: ‘ESCAPECHAR (‘F / ‘f) (‘0 / ‘o)

used to show the owner frame of the current frame;
the owner of a procedure is its caller; the owner of
a corout ine is the routine that did the openport to
the coroutine.

FT := ‘ESCAPECHAR (‘F I ‘f) (‘T I ‘t)

used to show the top frame on the stack

FB := ‘ESCAPECHAR (‘F I ‘f) (‘B / ‘b)

used to show the bottom frame on th~ stack

Fit :: ‘ESCAPECHAR (‘F I ‘f) ‘# N U M B E R

used to show the frame whose mark is NUMBER

Users ’ Guide to the Jovial Debugger

20



--- -—~ --~ - - — —--— ----- •
~

-—- - —- -•~
-.---—----—- -- -

SKO 1-May—79 15:45 47237
Concepts

Address Lists — Semantics

TABLESPEC :: SMPLIDENT DIMENSIONLIST

TABLESPEC is used to show the contents of items in a
JOVIAL table. It is possible to show items with
specific index values or the entire table. The
DIMENSIONL1ST is used to indicate which index values
of the TABLE are displayed.

ITEMSPEC := SMPLIDENT ‘BLOCKCHAR SMPLIDENT DIMENSIONLIST

ITEMSPEC is used to show the contents of’ a p a r t i c u l a r
item in a JOVIAL table. It is possible to show
specific index values of the item or all occurrences
of the item in the table. The DIMENSIONLIST is used
to indicate which index values of the item are
displayed.

BLCKIDNT := SMPLIDNT ‘BLOCKCHAR SMPLIDNT

BLCKIDNT is used to refer to the (local) symbol
(specified by the second SMPLIDNT) in the block (or
file) specified by the first SMPLIDNT; e.g., if “ & “
is the current ‘BLOCKCHAR , then the BLCKIDNT:
“fl&sfilev ” would refer to the symbol “sfilev ” in
file “fl” .

METAIDNT :: ‘LMCHAR SMPLIDNT

METAIDNT is used to refer to language specific
constructs; this notation is not used in the current
implementation of JDAD

BA := ‘ESCAPECHAR (‘A I ‘a)

this entity has the value of the address of the most
recently displayed cell

BB :: ‘ESCAPECHAR (‘B I ‘b) NUMBER

this entity has the value of the address at which
breakpoint NUMBER is set; it has the value of zero if’
breakpoint NUMBER is not set

BLN := ‘ESCAPECHAR (‘L. / ‘1) NUMBER

this entity has the value of the address of the
• NUMBE R—th local of the curren t frame

Users ’ Guide to the Jovial Debugger 21

4

• - -. ___________ •

_____  —~~~~~~~~~~~~~ -~~ -~~~~ -- -- --~~~~~~~~~.-•_. —--~~~~~~~~~~~~~~~ • . -



SKO 1—May—79 15:145 147237
Concepts

Address Lists — Semantics

BPN := ‘ESCAPECHAR (‘P I ‘p) NUMBER

this ent ity has the value of the address of the
NUM BER—th formal parameter of the current frame

EQ := ‘ESCAPECHAR (‘Q / ‘q)

this entity has the value of the most recently
displayed cell

BR := ‘ESCAPECH AR (‘R / ‘r)

this entity has the value of the return address for
the current frame

BY : =  ‘ESCAPECHAR (‘Y / ‘y)

this entity has the value of the most recently
completely evaluated EXPRESSION

Users ’ Guide to the Jovial Debugger

22

H



— —~~~~~~~~ --
~~~~~

--
~~~~~~~~~~-— -_____~~

---,-—----v.• -. - 
~~~~~~~~

-
~
—- — - - •--

~~
—--

~~~~~ 
—-- - - —-- --- -

~~~
- w~:- - -

— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- - - -

~~

- - -—---__- - -

SKO 1—May—79 15:145 147237
Concepts

Address Lists — Assigning to

Assigning To Address Lists

Many commands allow the user to assign to an address
list as it is being displayed. The specification of new
values to be assigned is handled by the ~N V L R U L
discussed below.

User s ’ Gu ide to the Jovial Debugger 23

L ~~~~~~~~~~~~~~~~~~
-

~
-
~~~~

- 
— ‘

~~~~~
--

~~
______ ~~~~—— -~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ .A~—~—-—-~- — •—

~~~
--—-

~~-—~~~~~~
- - ~-~~-—— .



IIITT~ _ _ _  
_ _ _

SKO 1—May—79 15:45 47237
Concepts

Two Special Characters

Two Special Characters

There are two characters used by JDAD as pseudo—interrupts
(PSI) that need a separate discussion. The specific
characters are initialized to <CONT ROL—L> and <CONTROL— K> ,
but may be changed by the user by using the Interrupt
command .

The first of these characters (initialized to <CONT ROL— L>)
is used to get the user to base command mode in JDAD. For
example , a user has inadvertently requested JDAD to display

• a large number of cells. Upon realizing the mistake , the
user may type 2 <CONTROL —L>s to abort output and return to
base command mode. Additionally, when tools are executing
(i.e. after the user has given the Continue command ), if
the user wishes to return to .JDAD , the user should type one
or two <CONTROL — L>s . Since this character is set up as a
deferred PSI , it will not take effect until the character
is read if only one <CONTROL — L> is typed . If ’ the user
wishes immediate action , then two <CONT ROL -~L>s should be
typed. (Note that in the case of aborting JDAD output it
may still take a while until the current contents of the
output buffers are empty and the user actually is able to
enter commands to JDAD .)

The second of these special characters (initialized to
<CONTROL— K>) is used to display a short status of tools
while they are executing (i.e. after the user has given the
Continue command).

Users ’ Guide to the Jovial Debugger

24



-

SKO 1—May—79 15: 145 147237
Command Summary

Debug Command

Command Summary

Debug Command

Overv iew
- • The debug command is used to point JDAD at a target

process. Once JDAD is pointed at a target process , the
full complement of’ JDAD commands becomes available.

Syntax

Debug (tool) #TOOLSPEC OK:

TOOLSPEC Rule

If JDAD does not know about any tools yet (as when
JDAD is first started , or after the user has given
the Done command for all active tools):

~TENEX— FILE—NAME :

lf JDAD does know about some processes:

#ACTIVETOOL.S :

~lDH :

— - OPT1ON ~TENEX— FILE—NAME :

this path allows the user to have one or more
parallel processes executing under JDAD

ACTIVETOOLS Rule

the FE maintained rule of the usenames for the tools
• the user is currently debugging

Users ’ Guide to the Jovial Debugger 25 

— .--. --- •———-- - -

— _ — — _ •__-_s - •
~~~~ 
—• _

~~~~~~~~~
- .• ••-~ 

•

- — ——S— ~~~~~~~~~~~~ —— —-— •— •~ ——— —



- a 
— _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  --— ------- ____

SKO 1 —May—79 15: 145 147237
Command Summary

Done Command

Do ne Comman d

Overview

When the user is done debugging a tool , he/she should
issue the Done command. Upon receiving a Done command ,
JDAD will do whatever cleanup is necessary with respect
to JDAD ’ s knowledge of the tool.. If the user was

• debugging only one tool , or th ree or more tools, then
JDAD will ask the user to specify which tool should
be co m e the curren t target tool upon com p let ing the Done
command.

F Syntax

Done (debugging tool) €ACTIVETOOL.S OK :

A CT I V E T OO LS R u l e

see the Debug command

U s e r s ’ Guide to the Jovial Debugger

26

A



r
/

SKO 1 —May—79 15:’45 147237
Command Summary

Quit Command

Quit Command

Overview

The Quit command is used to terminate a JDAD deóugging
session and to return the user to the TENEX EXEC.

Syntax

Quit (debugging session) OK :

t

User s ’ Guide to the Jovjal Debugger 27 

I- . ~~~~~~- -w~~~~&J_ - --
~~~~~~~

.,‘*.—-_-
-‘~~~~~~~

--
~~~~~~~-‘-‘ 

- - - - - - 

-- —-~--- -- ~~~~~~~~~~~~ --~--~~-———— -~~~~~~~~~—- ---
~~~~---~~-~ 

___ j_ _
~t_~

~~~~~~~~~~~~~ ~~~~~~~~~~~~~ .4



_ ___

_____

- • _---- :T -7---- --~ - - .-‘.

~ 

_ _ _

SKO 1—May—79 15: 145 47237
Command Summary

-
~~~~ Interrupt Command

1’
Interrupt Command

Overview

The interrupt command is used to change which characters
will serve the two special functions of returning to
JDAD’s base com-~’i d mode and of displaying the status of
executing tools.

Syntax

Interrupt Executing (programs & abort output character
should be) *ICHARAC TER OK :

This path allows the user to specify which character
will be used to return the user to base command mode .

Interrupt Status (character should be) ~ICHARACTER OK:

This path allows the user to specify which character
will be used to cause the display of the status of
executing tools.

ICHARACTER Selector

Any control character not currently serving another
function.

Use rs ’ Guide to the Jovial Debugger

28

— - - - —

4
SKO 1 —May—79 15:45 47237

Command Summary
Wheel Command

Wheel Command

Overv iew

The Wheel command is used by JDAD implementers- and
maintainers for the debugging and development of JDAD.
Issuing the Wheel command makes available commands not
normally available. The Wheel command requires the
knowledge of a special password . It is mentioned here
only because it may show up in response to a
questionmark (2) typed to see the alternatives
available.

Users ’ Guide to the Jovial Debugger 29

~

_ _ _ _ _ _ _ _ _
_ _


~~~~~~~~~~~~ IT~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

T~~~~~~~~~~~~~~ 
- -

~~~~~~~~~~~~~~~~~~~~~~~
- —--

~~~~~~~~ 
_ _

SKO 1—May—79 15:145 147237
Command Summary
Status Command

Status Command

Overview

The Status commands display the status of the debugger
to the user.

Syntax

Status OK:

Status Verbose OK:

This command provides more information about each
tool. being debugged than the default Status command .

Status For (tool) OK :

This command provides information about the current
tool.

Status Verbose For (tool) OK:

This command provides verbose information about the
current tool.

Status For (tool) ~IDH OK :

This command provides information for the spec ified
process.

Status Verbose For (tool) ~IDH OK:

This command provides verbose information for the
specified process.

Users ’ Guide to the Jovial Debugger

30 

- -  

-



________  —~ -- — - -— -----
~~~~
r—-— -

~~
—--

~
-—- —-—- —— - -- -—----- -------

SKO 1—May— 79 15:145 - 47237
r Command Summary

Comment Command

Comment Command

- Overview

This command is used to allow comments to appear on a
typescript , etc.

- Syntax

Comment ~CTEXT :

-

d5 to the Jov ia l Debugger 31

~~ _ _ _ _ _ ~~~~~~~~~~~~~~~~~~~~~~~~~~~

~TTT1TI ___
- - --

_

SKO 1—May—79 15:45 147237
C o m m a n d S u m m a r y

Ch a r a c ter C o m m a n d

Character Command

Overview -

these commands are used either to display which
characters are serving which generic functions , or to
modify which character is to serve a specific generic
function.

Syntax

Character (set definitions) Display OK:

This command is used to dett~rm ine whi ch c h a r a c ters
are serving which generic functions. Non— standard
definitions will appear first in the resulting
d isplay.

Character (set definitions) Use ~F C H A R A C T E R (in s t e a d o f)
•CHARRULE OK:

This command is used to change which character will
serve a specific generic function.

CHARRULE Rule

“PLUSCHAR” (for addition):

“MINUSCHAR” (for subtraction):

“‘TIMESCRAR ” (for multiplication):

“‘DIVIDECHAR” (for division):

“‘LPARENCHAR ” (for arithmetic grouping left
delimiter):

“‘BPARENCHAR ” (for arithmetic grouping right
delimiter):

“‘BLOCKCHAR ” (for symbol block delimiter):

“‘ESCAPECHA R” (for built jn variable escape):

“L.MCHAR” (for language module escape character):

“‘SEMICOL.ONCHAR” (for address list delimiter):

Users ’ Guide to the Jovial Debugger

32

- - .-- _~~~~~~~~~~~ -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- _ _ -- ‘
~~~~~~ 

- -‘-.-- -
~~~~~ 

- - —~~‘ L. .-•, ---• --~

.. -~ -

31(0 1—May—79 15:45 47237
C o m m a n d S u m m a r y

Cha r a c t e r Comman d

“‘COMMACHAR” (for address range delimiter):

“‘EQUALCHAR ” (for d isplay value):

“‘SLASLICHAR” (for d isplay using permanent typeout
m o d e) :

“‘LSQUA RECHA R ” (for display numerically):

“‘BSLASHCHAR” (for display as a string):

“‘EXCMA RKCHAR ” (for display in ascii):

“‘QMARKCHA R” (for tell where this symbol is defined):

“ ‘LARFOWC HA R” (for assignment):

“‘LFCHAR ” (for move to next addre s~~~:

“ ‘UPARR OWCHAR ” (for move to previous address):

“ ‘TABCHAB ” (for move to addressed address):

“ ‘POUNDCHAR” (for move to previously displayed
address):

Users ’ Guide to the Jov ial Debugger 33

-

~~

L ~~~~~~~~~~~~~~~~~~~~~~~~~~

- - -

~~~~~~

- 
•

______________________ ____I --~~~~~~~~ -~ _____ I



- 
~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ . _ .~~~~~~~~~~~ ‘ “  ~~~~~~~~~~ 

- .y • . -

- a - -

-

~~

SKO 1 —May—79 15 :145 147237
Command Summary

Input Command

Input Command

Overv iew

Th is command is used to display or change the permanent
input mode.

Syntax

Input (mode) Display OK :

Input (mode) ~ I N P T Y P O K :

I

I

Use rs ’ Guide to the Jovial Debugger

34

• .~~~~-~~~~~~~~~~ .—— ------— — - —--- — - - --~~ - - -
_ ---——

L - -~~ -

— ~~~ ~~._~~ •_-~~~~~
-
~

._--__ - •

SKO 1—May—79 15:45 47237
Command Summary

-
..
‘
~. Typeout Command

Typeout Command

Overview

This command is used to display or change the permanent
output mode.

Syntax

Typeout (mode) Display OK:

Typeout (mode) ~OUT1YP OK :

Users ’ Guide to the Jovial Debugger 35

~

~~~~~-~~~~ _ -



r I 

- - -

~~~~~~~~~~~~~~~

--

~~~~~~~~~~~~~~~~~

- -
.

-

~~~~~~ 

_

SKO 1 —May—79 15:~45 47237
C o m m a n d S u m m a r y
Sym bol Command

Symbol Command

Overview

A process may have more than one symbol table. (For
example , if different parts of the address space were
comp iled and loaded as distinct entities.) The symbol
commands allow the user to tell the debugger of the
location of the symbol tables. When the debugger , and
the appropriate Language Module , is first pointed at a
process , the LM will use the default location for
finding the symbol table.

The debugger ma kes its own copy of the process ’ symbol
table. Thus , if a process mod ifies its symbol table , it
is necessary for the user to give a new “Symbol”
command. (Ult imately this will be do—able
programmatlcally .) That the debugger uses a copy of the
symbol table is desirable in those cases in which code
executing code accidentally smashes the symbol table.

if a process contains more that one symbol table then
the user can point the debugger to different tables by
use of the symbol command and the debugger will copy the
symbol table the frist time it is pointed to a new
location. However , if a user subsequently points the
debugger to a location previously used , the debugger
will use its previous copy of the symbol table from that
location unless the user specifies that there is a new
pointer at the location.

Syntax

Symbol (table) Display (status) OK:

This command will display which symbol tables the
debugger knows about , indicate which is the current
symbol table , and provide an overview of the current
table.

Symbol (table) Display (status) Verbose OK :

This command will display all the information that
the Symbol (table) Display (status) command displays .
In in addition it will display all the entries in the
current symbol table.

Symbol (table) Display (status) Block OK:

1
Users ’ Guide to the Jovial Debugger

36

~~~~iii ~~~~
_ __j 

- -



- - -- -,-- 
~‘-•:w 

— —‘ —

~

------

SKO 1—May—79 15: 145 4 7 2 3 7
Command Summary
Symbol Command

This command will display which symbol tables the
debugger knows about and will indicate which is the
current symbol table. It will also display the
boundaries for the symbol table block specified .

Symbol (table) Display (status) Verbose Block OK :

This command will display all the information that
the Symbol (table) Display (status) Block command
displays . In in addition it will display all the
entries in the symbol table block specified .

Symbol (table) Pointer (located at) ~SYMADR OK :

Symbol (•table) Pointer (located at) *SYMADR OPTION
(undefined symbol table pointer located at) ~SYMADR OK:

These two commands will point the debugger to the
symbol (and undefined symbol) table (s) at the
specified location. If the debugger already has a
copy of the symbol table at the specified location ,
it will not copy the process ’ table .

Symbol (table) Pointer (located at) OPTION (new pointer
at) ~SYMADR OK:

Symbol. (table) Pointer (located at) OPTION (new pointer
ati ~STMADR OPTION (undefined symbol table pointer
located at) ~SYMADR OK :

These two commands will point the debugger to the
symbol (and udefined symbol) table (s) at the
specified location. This version of the command will
force the debugger to make a copy of the spec ified
symbol table(s) regardless of whether or not it
already has a copy of the symbol table at the
specified location. This is useful if a process has
modified its symbol table , or if a process is -

performing its own swapping in its address space.

User s’ Guide to the Jovial Debugger 37

__________ -

_ _ _ _

- ~~~~~~~~~~~~~~~ — ~~~~~~~~~~~~~~~~~~~~ 
_ _ _ _ _ _ _



SKO 1 —Ma y—79 15: 145 47237
Command Summary

Breakpoint Command

Breakpoint Command

Overview

The breakpoint command allows the user to specify that
the debugger (conditionally) be entered just prior to
the execution of an instruction at a specified address
in a target process.

A breakpoint is said to be “hit” when the instruction at
the address specified for the breakpoint is about to be
executed. After a breakpoint is hit , it either “takes ”
and the debugger is entered , or it doesn ’t take and
normal execution of the target process continues.

For each case , i.e., the breakpoint taking or not ,
the user may specify a string that will be fed to the
debugger , as if the user typed it , when the
breakpoint is hit.

The decision as to whether or not a breakpoint takes is
based on the following alZorithm :

If a user has specified a procedure to be called when
a breakpoint is hit , this procedure is called and
returns one of three values: take the breakpoint ,
don ’t take the breakpoint , or base the decision on
the proceed mode and counter. If this procedure
returns the third value , or if no procedure was
specified , then the breakpoint will take if the
proceed mode is normal or automatic or if the proceed
mode is count and this breakpoint has been hit count
times already without taking . (The ability to
specify such a procedure is not currently
implemented.)

Every breakpoint that is set , i.e., for which an address
has been specified , has the following attributes
associated with it:

a) its number , ~BTNUMBE R

When a breakpoint is first set , the user can
request a specific number , or let the debugger
assign an unused number for the breakpoint.

-• The user uses this number when he or she wishes to
modify or examine the status of the breakpoint.

Users ’ Guide to the Jovial Debugger

38



- 1~S

SKO 1—May—79 15:145 47237
Command Summary

Breakpoint Command

b) its address , ~8TADDRESS

This is the address at which the breakpoint is
set.

Note that specifying an address for a breakpoint
that is already set is equivalent to first
clearing that breakpoint and then setting the
address.

c) its name , ~BRNAM E

If and when a breakpoint takes , its name will be
displayed. A name is simply a string (including
the null string) used for information purposes
only .~ if a user is debugging more than one
process , he or she may choose to name the
breakpoints set in each process with the
appropriate process name. Names need not be
unique .

d) its proceed mode

Every set breakpoint has one of three proceed
modes:

Normal mode

Set either by default or by specifying a
proceed count of zero.

In this mode , the breakpoint will take each
time the breakpoint is hit .

Automatic proceed mode

Set by specifying proceed automatically.

In thi s mo d e , the breakpoint will take each
time the breakpoint is hit and then the
breakpoint will be continued automatically,
after processing its take command string if’
one exists.

Count mode

Set by specifying a non—zero proceed count .

Users ’ Guide to the Jovial Debugger 39

L 

- - - - - 

--
- 

- - — - - .
- ~

-- --

~~~~~~

— -- -~~---~~A .~ ---~ ~~ ~~~~~~~~~~~~~~~~~ ~~~~~.~~~~~~~~~~~~~~
-—--

~
- -

--

- -
- ----—--— —--

~~

___ -
- _ -

~~~~~~~~~~~~

• 
SKO 1 —May— 79 15:145 147237

Command  S u m m a r y
Breakpoint Command

In this mode , the breakpo int will not take
until the breakpoint has been hit count plus
one times. If a no take command string
exists , then the count times this breakpoint
is hit before it takes , the no take command
string will be executed.

e) its call procedure , PNAME — NOT I M P L E M E N T E D  YET

f) its take command string

When a breakpoint takes , if this string is
non—null it will be fed to the debugger as if the
user entered it on his or her terminal prior to
accepting input from the user or automatically
continuing .

g) and its no take command string

If a breakpoint doesn ’t take , and if this string
is non—null it will be fed to the debugger as if
the user entered it on his or her terminal when
the breakpoint is hit and prior to continuing the
breakpoint.

Syntax

Breakpoint Display (all) OK:

This command will display the status of all
breakpoints that are currently set.

Breakpoint ~BTNUMBER Display OK :

This command will display the status of breakpoint
BTNUMBER.

Breakpoint Clear (all) OK :

This command will clear all breakpoints , i.e. make
them not set.

Breakpoint BTNUMBER Clear OK:

This command will clear breakpoint ~B T N U M B E R .

Breakpoint Set (at) ~DTADDRESS ~BOP T :

Users ’ Guide to the Jovial Debugger
40

- _I_—- -

- -- ._-_ L -_ -— .. .—-~~~~~ —‘- ~~~~ _ —•— --—-——- 
- - -

~~-- - _



_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  — ~~—--- —-~~ --~ —--V- —------- —-—-—

SKO 1—May—79 15: J45 47237
Command Summary

Breakpoint Command

Breakpoint ~2TNUMBER Set (at) ~BTADDRESS ~BOPT :

These two commands will set a breakpoint at the
specified address , and will set any of the attributes
specified . If *BTNUMBER is not specified , then the
debugger will assign a number for this breakpoint.
If ~BTNUMBER is specified and it refers to a
breakpoint that is already set , then that breakpoint
will be cleared first , and then set at the new
address with any attributes specified in this
instance of the command .

Breakpoint *BTN UMBER #BOPI’l:

This command allows the user to modify the attributes
of breakpoint ~BTNUMBER .

BOPT Ru le -

OK:

•BOPT1:

— 

BOPT 1 R u l e

Call (procedure) ~P N A M E  ~bOPT :

NOT IMPLEMENTED YET.

This rule is used to specify the name of a
procedure that will get called when a breakpoint
is hit to determine whether or not to take the
breakpoint .

Procee d Co unt (:) ~PNUMBER #BOPT :

This rule is used to place a breakpoJ.~it in either
normal proceed mode (if ~PNUMBER is zero) or in
coun t mode.

Proceed Automatically #BOPT :

This rule is used to place a breakpoint in the
automatic proceed mode.

Name ( f o r  th is  breakpoint  i s)  ~BRNAME ~BOPT :

User.’ Guide to the Jovial Debugger 141

-• -—~~~~~~~~~
—

~~~~~~
- _ _ _ _ _ _ _ _ _

SKO 1—May—79 15: 145 147237

4
Command Summary

Breakpoint Command

This rule is used to specify the name for a
breakpoint.

Break (commands are) ~5RKCMNDS ~B0PT:

This rule is used to specify the take command
string that gets executed when a breakpoint takes.

No (break commands are) *B R K CMND S #BOPT :

This rule is used to specify the no take command
str ing that wi l l get executed if a b reakpo in t is
hit but doesn ’t take .

Users ’ Guide to the Jovial Debugger

42

H _ _ _ _ _

-
-

~~~~~~~~~~~~~~~ 
—

— -•-•.~~~~~
l
~ ~~~~~~~~~ ~~~~

‘•
~

- 
- 

- —--

______________________________________________________ — g .~~~~•_._ - — ~~~ _ ~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~


SKO 1 —May—79 15: 145 147237
Command Summary

Continue Command

Continue Command

Overview

The continue commands allow the user to continue the
execution of the process(es) that were executing before
entering the debugger (regardless of whether the
debugger was entered via a (nested) EXEC DEBUG command
or by the tak ing of a (nested) breakpoint), or to modify
the address at which a process will have its execution
resumed when execution is ultimately continued , and
optionally to modify the speed with which execution will.
proceed .

Syntax

Cont inue O K :

This command will continue whatever was going on
before the debugger was entered.

Continue OPTION (address for this process is) CNADDRESS
OK:

This command will change the address at which the
current target process will resume execution when it
is ultimately continued.

Continue At ~CNADDRESS OK :

This command will change the resume address of the
current target process and then continue what was
going on before the debugger was entered .

Cont inue At ~C N A D D R E S S ~C N S P E E D O K :

This command will change the resume address of the
current target process and then continue what was
going on before the debugger was entered , at the
specified execution speed .

Continue •CNSPEED OK:

This command will continue what was going on before
the debugger was entered , but at the newly specified
speed .

Users ’ Guide to the Jovial Debugger 43

- —- -
•

— —. ---~~ —---—- — ——- ——-~~-— -- -.- —•---- — — ~
—

~~~~~~-..-- 
_j__ 

—•~~ -- - - ~L&~ lll~E1lu1llIlIu1lluII.daiIl.l~ ...c...I.bJ



- - 
SKO 1—May—79 15:145 47237

Command Summary
Continue Command

C N S P E E D  R u l e

Normal (speed):

For (one) eSPDRUL .E :

Users ’ Guide to the Jovial Debugger

44

~1
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

_ _ _ _ _ _ _  _ _ _ _ _



— ~~~~~~~~~~~~~~~~~

5K” 1—M ay—79 15:45 47237
Command Summary

Free Command

Free Command

Ov erv iew

Several debugger operations require -the use of free
cells in the address space of the target process (e.g.
breakpoint continuing, executing an instruction on the
behalf of the target process). This command allows the
user to specify where the debugger should get the cells
it requires.

Currently the debugger requires 14 cells to implement
breakpoints. It is expected that when instruction
execution on the behalf of the target process ,
specifically procedure calls , is implemented , the
debugger will require as many as 2—3 dozen cells
(depending on how many parameters are being passed);

The cells that the debugger is currently using can be
determined via the Verbose form of the Status command .

Syntax

Free (core available at) ~FCA DR OK :

Users ’ Guide to the Jovial Debugger 145

L ~~~~~~~~~~~~~~~~ --~~~~~~~~~~~~-- .•--~~~ -- - — - _ -- -. ~~~~~~~~ •~~~~~~~~~ - - ~~~- - ~~~~~~~~ 

_



- 

~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-

SKO 1 —May—79 15: 145 147237
Command Summary

.•
•.
. Define Command

Def ine Command

Overv iew

Th is is the command to give the debugger the definition
of a JCVIAL table.

Any number specified in the table and item definition
textual strings , such as item size or table dimensions ,
are treated as dec imal values; this is independent of
the current or permanent input mode radix for the
debugger.

Syntax

Define table (table definit ion) TABLEDEFINITION (at
l o c a t i o n) ~D A D D R E S S L I S T ~ I T M R U L

T A B L E D E F I N I T I O N

The text to define the table is similar to the format
of the table declaration in the JOVIAL language . The
format of this text is given below. -

T A E L E D E F I N I T I O N := TABLENAME DXMENSIONSPEC
[STRUCTURE] [PACKING] ‘ ;

TABLENAME := a val id JOVIAL table name

DIMENSIONSPEC := a val id JOVIAL dimension list

STRUCTURE := a val id JOVIAL structure specifier

If STRUCTURE is not specified , ser ial s t r u c t u r e
is assumed .

PACKING :: a valid JOVIAL packing specifier

If PACKING is not specified , no packing is -

assumed .

I T M R U L R u l e

(item definition / OK if done)

~I T E M D E F I N I T I O N

OK

Us ers ’ Guide to the Jovial Debugger
46

—--—— -~~~~~~~~ .- - - —--
- 1.- •-~t-

~~~~~~~~ - --- 
-

~~~ ~~~~~~~


— —~~ — — —
~

-
~~~~~~~

-.- 
~~~~~~~~~~~~~ - — — --——~

----- —----— —- —- — — -
~~~

—---—--— — -———- —

.•
•
~ SKO 1 —May—79 15: 145 147237

Command Summary
Define Command

This rule allows the user to type in a definition for
each item in the table. When all items have been
specified , the user types OK to terminate the rule.

I T E M D E F I N I T I O N

This is a textual string that defines an item. It is
similar to the format of the table item declaration
in the JOVIAL language. The format of this text is
given below.

ITEMDEFINITION := TABL.EITEHNAI4E ITEMSPEC [PACKING]

TABLEITEMNAME :: a val id JOVIAL table item name

I T EM SP EC := a valid JOVIAL item description

Currently for float ing point items , only single
prec ision floating point values with default
accuracy has been implemented .

PACKING := a valid JOVIAL packing specifier

If PACKING is not specified , whatever packing
has been specified for the table is assumed .

Use rs ’ Guide to the Jovial Debugger 47

- -_- ------ ---

~

-

~

- •-—- —-

~

-

.

- - -

.

~~~~~~~~~~ --~~~~~- 
_ _ _ _ _ _ _ _ _ _

-
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~

----- -
~ --- -- ~~~~~~- - - - -



r~ 11 T T~~~~~~~~~~~~~~~~~~I~~~~~~~~ ~~~~~~~~~~~~

—--

~~

-- _

51(0 1—May—79 15:145 147237
C o m m a n d S u m m a r y
Disp la y C o m m a n d

Display Command

Overview

Th is is the basic command for displaying entities
(c e l l s , state information , etc.) in the target process.

Syntax

D i s p l a y  ~D A D D R E S S L I S T :

This command will display the specified address list
in the mode spec ified by the ~DADDRESSL1ST term inator
(and for certain values of this terminator will let
the user modify the displayed address list).

DADD RE SSLI S T  Se lec to r

a ~DADDRESSLIST is an ~ADDRESSLIST that is terminated
b y e i t her an OK or @ D T E R M

DTERM Rule

OPTION (Cypeou t mode) ~ O U T T Y P  OK :

This terminator will cause the specified address
list to be displayed in the output mod e spec~~f i ed
by •OUTTYP.

OPTION (typeou t mode) €CUTTYP OPTION (and assign to
address list) OK:

This terminator will cause the specified address
list to be displayed in the output mode specified
by ~O U T T Y P , and will a l l o w  t he u s e r  to mo di f y  t he
d isplayed cells as they are being displayed.

‘S LAS iiC HA R

‘BSLASHCHAR:

‘LSQUARECHAR:

‘EXCNARKCHAR :

‘QMARKCHAR:

‘EQUALCHAR :

Users ’ Guide to the Jov ial Debugger

48 

i —--------------.---~-—  I



I~~ ~~~~~~~~~ _____ 

- -

~~~~~

--

~~~~~~~~~~~~

---- - - -  

~~~

-

~~~~

-

~~~~~~~~~~~

-
_

~~~~

SKO 1—May—79 15:45 147237
Command Summary
Display Comman d

‘LARROWCHAR:

— 

• 
‘ T A B C H A R :

‘POUND CHAR:

~LFCHAR:

‘U PAR R 0 W C HA B

F

User s’ Guide to the Jovial Debugger 49

- -• — - 

~~~~~~

~~~~~~~~~~~~~~~~ ~~~~~~~~~~ ~~~~~ 
IIi i:mj



- -I- — — _-~~ l-’- -

SKO 1—May—79 15: 145 47237
Command Summary

Find Command

Find Command

Overview

The find commands allow the user to display, and
opt ionally assign to , those cells in an address list
that meet certain content requirements. The user may
specify a mask to select those bits in a cell that he or
she is interested in checking against similar bits in
the value that he or she has specified. In fact , eac h
cell in the address list is logically ANDed with the
mask and the result is then compared with the AND of the
mas k and the specified search value .

The mask used in a reference search is one that will
selec t the address field of a cell. The mask used for
con tent and not content searches is the debugger default
mask , unless the user specifies a mask for this instance
of the command. The default debugger mask can be
d isplayed and modified via the Mask command . It is
initially set to select all bits in a cell.

A reference and a content search will display, and
opt ionally allow the user to assign to , those cells in
the address list for which the above ment ioned compare
was equal. A not content search will display, and
optionally assign to , those cells that compare
unequally.

Al l  d is p l a y e d  c e l ls , will be displayed in the current
outpu t mode unless the user specified ~FADDRESSLIST
term inator modifies the display.

The user may optionally specify an input mode that will
be used to evaluate the specified search value , ~FVALUE .

Syntax

Find References (to) ~FSPEC (in address. list)

~FADDRESSLIST:

This command will display, in the output mode
specified by ~FADDRESSLIST terminator , (and , if th is
terminator dictates it , assign to) those cells in the
specified address list whose address field is equal
to the specified ~FVA LUE.

Use rs ’ Guide to the Jovial Debugger

50

_______________________________ 

--_ t1



m~~~~~~~--  — 
-- -

SKO 1 —May—79 15: 145 147237
Command Summary

Find Command

Find Content €FSPEC (masked by) €MSPEC (in address list)

~FADDRESSLIST:

This command will display, in the output mode
specified by ~FADDRESSLIST terminator , (and , if this
terminator dictates it , assign to) those cells in the
specified address list whose selected bits , as
specified by €MSPEC , are equal to the corresponding
bits in the specified ~FVALUE.

Find Not (content) #FSPEC (masked by ) ~MSPEC (in addressl i s t)  ~FADDR E SSL IS T:

This command will display , in the output mode
specified by FADDRESSLIST terminator , (and , if this
terminator dictates it , assign to) those cells in the
specified address list whose selected bits , as
specified my #MSPEC , are not equal to the
corresponding bits in the specified ~FVALUE.

FSPEC Ru le

~F V A L U E :

the search value

OPTION (input mode) #INPTYP (value ) ~FVALUE :

This rule allows the user to spec ify a curre nt
input mode that will be used to evaluate ~FVALUE
and ~M VA L U E

MSPEC Rule

OK:

Use the default debugger mask

~M V A L U E :

The mask to be used for this instance of the find
command .

FA DDRE SSLIST Se lector

a ~F A D D R E S SLIST is an *ADDRESSL IST that i~ term ina t e d
either with an OK or ~F T ER M

User s ’ Guide to the Jovial Debugger 51



_ _  

— -n- 
~~~~

—

~~~~~~~~~~

-- -

~~~~~~~~~~~

-

~~~

SKO 1 —May—79 15 :145 147237

..•~ Command Summary
Find Command

FTERM Rule

‘SLASHCHAR:

‘EXCMARKCHAR :

OPTION ~OUTTYP OK:

OPTION €OUTTYP OPTION (and assign to address list)
OK:

Users ’ Guide to the Jovial Debugger

- . 

52

— —~~~~~~ — -~~~~~ -- —- ~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ — ~~~~ - — —rn~~~~~~~~~~ ~~~~



--—- -- ---

4- SKO 1 —May—79 15: 145 47237
Command Summary

Mask Command

Mas k Com m an d

Overv iew

This command allows the user to examine or to modify the
default debugger mask , which is used by the Find and
Memory commands.

Syntax

Mask Disp lay  O K :

Mask Set (to) *M VALUE OK:

Mask Set (to) OPTiON (input mode) #INPTYP (mask value )
~MV AL UE O K :

t

Users ’ Guide  to the Jov ia l  Debugger 53

_ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _- . •_____ .____I,, — - - — 
-— 

~~~~~~~~~ -

~

- -~~~~~~~~ -~~~~~~~~~~~~~~ - - .--- ~~~~~~~~~

-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
. - -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- 

~~~~~~~

--

SKO 1 —May—79 15:145 147237
-
.•

~ Command Summary
Memory Command

Memory Command

Overview

The memory commands allow the user to set (selected
bits) in all cells in the specified address list to the
specified value .

If the user does not s p e c i fy to use a mask , then all
bits in the pertinent cells will be affected . If the
user specifies to use a mask , then he or she may use
either the default debugger mask , or way specify a mask
for this instance of the command .

If a mask is used then only those bits selected by the
mask will be set , and they will be set to the
corresponding bits in the specified ~MNVAL.UE .

Syntax

Memory (set to) €MNSPEC (in address list) ~M A D D R E S SLI ST :

This command will set the selected bits in the cells
in the specified address list to the corresponding
bits in the specified ~MNVA LUE.

MNSPEC Rule

~MNVALUE:

the value to set the selected bits to

OPTION (input mode) #INPTYP (value) ~M V A L U E :

this path allows the user to specify a current
input mode that will be used to evaluate ~MN V A L U E ,
and ‘

~tIVA LUE (if one is specified)

MADDRESSL IST Selector

a ~MADDRESSLIST is an
*ADDRESSLIST is terminated by

either an OK or €MTERM

MTERM Rule

OPTION (masked by) OK :

Users ’ Guide to the Jovial Debugger

54

_ _

‘-I
~..1~~~~~ — — — -

~~~
—-- g ~~ 1L—.--~~~~~~~~~~~- ..: ..



SK O 1—May—79 15:145 147237
Command Summary

Memory Command

this path indicates to use the default debugger
mask to select bits in the address list for
modification

OPTION (masked by) *MVALU E OK:

t his path a l lows the user to spec ify  a mas k to use
to select bits in the address list to be modified

F

- I 
Users ’ Guide  to the Jovia l  Debu gger  55

_ _ _ _  _ _ _ _ _ _  _ _ _ _ _ _ _  _ _ _ _ _ _ _  

1’
—-— ~~~~~~ - - .— . - --—.~ ~~— .——.- ——-——-- ,,._. _

~~ —

- ~~~~~~~~~~~~ ~~~~~~~~~~~~ 



-- -

~~~~ 

- -

SKO 1 —May—79 15: 145 47237
Command Summary
Output Command

Output Command

Overview

The output commands give the user the capability to
multiplex output to his or her terminal and/or to a
sequential text file. If output is currently going only
to a file , the user will not have the ability to modify
cells in an address list unless the Type command is
used. If output is going only to a terminal , the user
can force output to a file by use of the Print command .
When the user first specifies a file , output will be
sent to both the file and the terminal . %~hen specifying
a file , the user can either specify a new tile , or an
old file to which the output should be appended .

Syntax

Output (printing) Display:

Output (printing) Append (to file) ~OLDFILEL INK OK :

Output (printing) To (file) ~NE~ FILELINK OK:

Output (printing) Off OK:

Output (printing) Both (to file and terminal) OK:

Output (printing) Solely (to) File (and not to terminal)
OK:

Output (printing) Solely (to) Terminal (and not to file)
O K :

Users ’ Guide to the Jovial Debugger

56

- -

r

—- —---

~~~~~ ~~~~~

‘

~~~~

—

SKO 1—May—79 15:45 147237
Co mmand Summar y

Print Command

Print Command

Overview

This command is used to display the specified address
list on the specified file. If there is already a
specified output file , then this is the one that will be
used , and the user will not be asked to specify a file.
(Note that when using this command , it is not possible
to modify the cells as they are being displayed since
they will be displayed on an output file and not on the
user ’s terminal . Among other things , this may be useful
for “core dumps ” .)

Syntax

Print ~PADDRESSLIST:

This command will display the specified address list
on the current output file in the mode specified by
~PADDRES5L.I5T terminator.

Print (on file) ~NEW FILELINK ~PADDRESSLIST :

This command will display the specified address list
on the s p e c i f i e d output f i l e in the mode spec i f i ed by
~PADDRESSLIST terminator.

PADDRE 5SL.15T Selector

a ~PA DDRES SLIST is an ~ADDRESLIST terminated by
either an OK or I PT ERM

PTERM Rule

OPTiON (typeout mode) #OUTTTP OK :

•SLASHCHAR:

•BSLASHCHAR:

• LS QUA EEC NAB

•EXC M A R K C H A R :

• QMA K KC HA B

• E Q U A L C H A R :

Users ’ Gui de to the Jovial Debugger 57

~

_ _ _ _ _ _ __ __ ___ ___ ___ __ __ _

--——- ————— - —‘—-‘.~~ ---‘r~~ ~~~~~~~~~~~~~~~ ~~

r ~~~~~~~~~~~~~~

- ----- -

~~~~ 

- --  - - - -

~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~

SKO 1— May—79 15: 145 117237
Command Summary

Print Command

‘TABCHAR :

• POU N DC HA F’ :

•LFCHAR:

*UPARROWCHAR :

Users ’ Guide to the Jovial Debugger

58

-

~
-
~~ 4

-

-

r T,~~~~
— ~1, -

SKO 1 — M a y — 7 9 15 :145 117237
Command Summar y

Type Command

Type Command

Overv iew

This command is used to display the specified address
list (in the specified mode) on the user ’s terminal
regardless of his output file settings .

Syntax

Type ~DADDRES SL IS T:

(See the Display command.)

— Users ’ Gu ide to the Jovial Debugger 59

L -

- —--
c~~

___ ___ .-~~~~~~~ ~~~~~~~~~~~ ~~~~~

SKO 1—May—79 15 : 145 147237
Command Summary

Value Command

Value Command

Overview

This command is equivalent to:
-

Display ~ADDRESSLIST ‘EQUALCHAR :

Syntax

Value (of) ~VADDRESSLI5T: -

VADDRESSLIST SELECTOR

a ~V A D D R E S SL I S T is an ~ADD R E S SL I ST t e r m i n a t e d by
either an OK or €VTER M

VTERM Rule

‘EQUALCEAR:

Users ’ Guide to the Jovial l Debugger
60

-

L

- -~~~ ——— - --~~~~~~~~~~~~~~~~~~~~~ -- ~~~~~~~~~~~~~~
j
~ j _ _~~__ - ~_iI

- ‘
~~

‘“ L~~~~~~~~~~~~~I :- ~~~~~~~~~~~~~~~~~~~~
‘T

~~~~~~~~~~~ ~~~~i ’

SKO 1—M ay—79 15: 145 47237
Command Summary

Speed Command

Speed Command

Overview

The speed command a l lows  the  user  to m o d i f y  the
execution speed of the current process. The execution
speed can be modified so that the process will execute
in a single step mode (a single machine or language
instruction at a time); and/or to treat an entire called
procedure as if it were one instruction; and/or to
e x e c u t e  u n t i l  a branch or transfer instruction is
encountered ; and/or to continue automatically after
entering the debugger and notifying the user because one
of the above conditions has been met.

Syn tax

Speed (of execution) Normal OK :

This command resets the execution speed for the
current process back to normal speed .

Speed (of  execu t ion)  Single € SP DRULE :

This command allows the user to modify the execution
of the current process.

• -

Users ’ Guide to the Jovial Debugger 61

______ 

‘ I

-1

_ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
i~~~~~~~~~~~~~~~~~~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



-- ~-—- --- --
~~ ~~~~

-

~~~~

-

~~~~~~~~~

-—-—

~~~

—

~~~~~ 

-
~~~

—
~~~~~~

-—
~~
-- --

SKO 1 —May—79 15: 145 147237
Command Summary

p4 GFC ‘BSLASHCHAR Command

‘BSLASHCHAR Command

Overview

This command is equivalent to:

Display ‘ESCAPECHAR Z ‘BSLASHCHAR:

Syntax

“ ‘BSLASlICHAB” :

Us ers ’ Guide to the Jovial Debugger
62

- 

- 

L . - 

_  

_ _

-•~--~ -~--—- --.~~~~~~~~ — ~~~~~~~~~~ .— ___.•__ _a.~~

___
~~•__ ~~-~~ -~~ -- —I -



.- - .- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

• -

SKO 1 —May—79 15:45 47237
Command Summary

GFC ‘EQUALCHAR Command

‘EQUALCHAR Command

Overv iew

This command is equivalent to:

Disp lay ‘ESCAPECHAR Z ‘EQUALCHAR:

Syntax

- - 

“‘EQUALC HAR ” :

User s ’ Guide to the Jovial Debugger 63

- 

ri i’~~~~ -~~ ~~~~~~~~~~ 
— 

________



!‘“

~~

‘

~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~

- ,-.,

~~~

-

~

-•—-- -

~~~~~~~~~~

—.--- -v’- —r w -V- -- - - ‘ - — - ________________

51(0 1 —May—79 15:45 47237
— Command Summary
4- GFC ‘E X C M A R K C H A R Command I

p4

—

‘EXCMARKCHA R Command

Overview

This command is equivalent to:

Display ‘ESCAPECHAR Z ‘EXCMARKCRAR :

Syn tax
I-

- “‘EXCMARKCHAR” :

- U sers ’ Guide to the Jovial Debugger
64

N 1

_ _ _ _ _ __ _ __ _ ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~

—.- -- .~~~~-- - — - -- -~~~~~~

51(0 1 —May—79 15:145 117237
Command Summ ar y

GFC •L. S QU ARE CH AR Command

‘LS QUARECHAR Command

Overv iew

This command is equiva lent to:

Disp lay ‘ESCAPECHAR Z ‘L S Q U A R E C H A R :

Syntax

“LSQU #.R EC HAR ” :

I

Users ’ Guide to the Jovial Debugger 65

- -
~~~~~~ - -~~~~-.- -~~ • -~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~

-•*-— - .  ~~~~~~~~~~~~~~~ - ~~~~~~I

_ _ _ _  _ _ _



WI- 
~~~~~~~~~~~~~~~ 

-, -—-——— — ——- — ‘I-—..-

~

,

~~~~~~~~~~~~ 
-I.-

-

________— -- - — —~~~ .~~~

SKO 1 —May—79 15:115 147237
Command Summary

GFC •QMARK CHAR Command

‘QMAR KCHAR Command

O v e r v i e w

This command is equivalent to:

Display ‘ESCAPECHAR Z *QMARKCHAR:

Syn tax

“QMARKC BAR” :

Users ’ Guide to the Jovial Debugger

66



-- - - 

~TIIIIIII:____

31(0 1 —May—79 15:115 117237
Comman d Summar y

GFC ‘SLASHCHAR Command

‘SLASHCH AR Command

Ov erview

This command is equivalent to:

Display •ESCAPECHAR Z ‘SLASHCHAR:

Syntax

“‘SLASHCHAR” :

Users ’ Guide to the Jovial Debugger 67

~~~~~ 

-:
~~~~~~ _ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


SKO 1—May—79 15:45 14 7237
Command Summary

GFC •LARROWC IIAR Command

•LARROWCHA R Command

Overview

This command is equivalent to :

Display ‘ESCAPECHAR Z ‘LARROWCHAR:

Syntax

“‘LARROWCHAR ” :

Users ’ Guide to the Jovial Debugger

68

- ~~~~-- -- —- - - - - —•-—

~~~~~~~~~~~~~~~~~~ -~~~~~~~~~~~~~~~~~~~~~~ --~~~ ~~~~~~~~~~~~~~~~~~ __
~~~~~~_J ~~~~~


SICO 1—May—79 15:145 117237
p4 Comman d Summary

GFC ‘UPARRObICHAR Command

‘UPARR OWCHAR Command

Overv iew

This command is equivalent to:

Display ‘ES CAPECHAR A — 1:

Synt ax

“‘UPARR OWC HAR” :

I

Users ’ Guide to the Jovial Debugger 69

~~~~~~~~~~~~~~~ - 
. 

- -~~~~~~ L~-~~~ i
’

- ’ 
~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- -

-~~~~~——. -~~~ ~~~~~~~~~~~~~~~~~

—-~.---.‘-,- __

- - -

SKO 1—May—79 15:145 47237
Command Summary

GFC •LFCHAR Command

‘4
•L.FCHAK Command

Overview

- This command is equivalent to:

Display ‘ESCAPECHAR A + 1:

Syn tax

“‘LFCHAR”:

User s ’ Guide to the Jovial Debugger

70

I

~~~~~~~~~~~~~



SKO 1—May—79 15:45 4 7237
Comman d Summary

GFC •TABCHAR Comman d

‘T A R CH A R  Command

I 
- Overv iew

This command is equivalent to:

Display ‘ESCAPE CHAR Q:

Syntax

“‘TA R C H A R ” :

II

Users ’ Guide  to the  Jovial  Debu gger  71

I 
_ _ _  

_  _  _  __________________________ ~~~~~ -.. ~~
.• — —-- _

~
_
~A ~~~~~~~~~~~~~~ ~~ ____ 

- 
-
.

— • . 
. .

- • 
- -

.—~~~~ .-- .-.-•~ ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -. 
~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~ ~~~~~~~~~~~ 

._
~~~~



SKO 1 —May—79 15:45 I47237
Command Summary

GFC ‘POUNDCHAR Command

‘4

•POUNDCHAR Command

Overview

This command is the inverse for the last Tab , Linefeed ,
Uparrow , or Pound command .

Syntax

“ ‘POUNDC NAB ” :

Users ’ Guide to the Jovial Debugger
72 

_ _ _ _ _ _ _  ______  ~~~~~~~~~~~~~~~~~~~



~~~~~~- -~~: i::i ~~~~~ ~~~~~—~~~~~~
‘

— .-.

- SKO 1 — M a y — 7 9 15: 145 4 7237
Command Summary

Common Ru les

- Commo n Ru les

BASE Rule

Decimal :

Octal:

Hex:

B i n a r y :

INPTTP Ru le

Asc i i :

Bit:

Bytes (with bytesize of) BSVALUE :

Floating (point numbers):

RadSO :

Rad ix *R X V A L .U E :

R a d i x A B A S E :

Sixbit:

Symbolic :

OUTTYP R ule

A d d r e s s e s (a s) A b s o l u t e (v a l u e s) :

Addp esses (a s) Symbol i c (v a l u e s) :

A r r a y :

Ascii:

Bit:

Bytes (with bytesize of) BSVALUE:

Character: (with size) ~CSVALUE

User s ’ Gu ide to the Jov ia l Debugge r 73

~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- -.- 

~irr~~ ~~~~~~ • -• ~~~~~~~~~~~~—- — •I A
III, I 

— 
- - A ~~~~~—.‘ -

~~~~~~~ -..~--—— -.--——--.— — -- - —-— --- —- ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ . -~• ~~~~.— ~~ •— ~~~~~~~~~~~ . • —  ~~~~~~~~~~~ - —- - ~~~~~~~ -~~-‘~ • - - - -


-

51(0 1 —May—79 15:445 47237
Command Summary

Common Rules

- ‘4
Floating (point numbers):

N u m e r ic :

RadSO : -

Radix ~RXVAL UE:

Radix ~BASE:

Sixbit:

Symbol ic:

NVLRUL Rule

CD:

abort the display of , and assignment to , this address
l ist - _____-

OK :

accept the displayed value of this ent ity

~NVAL.UE OK:

replace the value of the displayed entity with
NVA LUE , which will be interpreted according to the

current input mode

OPTION (input mode) IINPTYP (new value) ~N V A L U E OK:

r e p~ ace the value of the displayed entity with

~NVA LUE , whic’h~~ ill be interpreted according to the
specified input mode

~MOVRUL :

~NVA LUE #MOVRUL :

OPTION (input mode) EINPTTP (new value) ~NVAL UE ~MOVRUL :

the above 3 paths allow the user to terminate the
(optionally) newly specified value (for the displayed
entity) with the ~MOV RUL paths. When the display of ,
and assignment to , the specified address list is

Us ers ’ Guide to the Jovial Debugger

74

I ~—

-
- —

I - ~~~ —~~ . ~~~~~~~~~~~~~~~~~~~~~~~~~~~ .-
- . ~~~~~~~~~~ -

~I
-

-.

~~~~~~~~~~~ 
•

~~~~~

SKO 1—May—79 15:45 47237
Command Summary

Com mon Rul es

finished , the last specified €MOVRUL path will take —-. ____

effect as if the user had given the GFC command - ____

corresponding the the ~MOVRUL. path

MOVRUL. Rule

‘TABCHAR:

‘POUNDCHAR:
-- - __________________

‘LFCHAR:

‘UPARROWCIiAR:

S P D R U L E R u l e

In the following, the ordering of ~SP D P R O C , #SPDEXEC ,
and ~SPDCONT , is not important , and 0, 1 , 2, or all 3 of
the rules may appear.

ISPDTYPE OK:

#SPDTYPE ~SPDPROC OK :

#SP DTYPE #SPDEX EC OK :

~S P D T Y P E ~SPDCO NT OK:

@SPD TYPE ~SPDPROC @SPDEXEC OK:

#SPDTT PE €SPDPR OC € SPDCONT OK :

ISPDTYPE •SPDEXEC ~SPDCQNT OK:

#SPDTTPE €SPDPROC ~SPDEXEC ~SPDCONT OK:

SPD CON T Ru le

Proceed (automatically arter each instruction):

This rule allows the user to continue automatically
after entering the debugger because some single
stepping mod e condition has been met.

Us ers ’ Guide to the Jovial Debugger

--- •- — — .- —•- —•--- --•—.• —• .—

~

-

~~

.-I—-—

~~

•.•—
~~~~~~~~~~~~~~~~~~~~~

~~~~ i____._ 

- - -

SKO 1 —May—79 15:~4 5 447 237
Command Summary

Common R u l e s

SPDEXEC Rule

Execute (until branch point or transfer instruction):

This rule allows the user to have execution of the
process continue until a branch or transfer
instruction is encountered .

SPDP R OC R u l e

Treat (called procedures as one instruction):

This rule allows the user to treat a called procedure
as one instruction rather than as a series of
instructions.

SPDTYPE Rule

Language (instruction):

This rule means to deal with instructions at the high
level language level as opposed to at the machin e
level.

Machine (instruction):

This rule means to deal, with instructions at the
machine level as opposed to at the high level
language level.

- -. ~ , v t a 1 Debugger

-

~~~~~~~~~ ~~

4- SKO 1 —May—79 15:145 ~47237
Command Summary

Selec tors

Selec tors

In the following discussion an expression is really a text
selector that conforms to the rules for expression
generation for the current language being used by the
debugger.

ADDRESSL1ST Selector

text that conforms to the formal definition of an
address list (see above )

B RKCMNDS Selector

any text

BRNAME Selector

any text

BSVALUE Selector

a number in the current input mode radix

BTADDRESS Selector

an expression that evaluates to an address

BTNUMBER Selector

a number in the current input mode radix

CNADDRESS Selector

an expression that evaluates to an address

CSVALUE Selector

a number in the current input mode radix

CTEXT Selector

any text

Users ’ Guide to the Jovial Debugger 77

1 —
‘I

L~~~~ _ _ _ _ _ __ _ _ _ _ __ _ _ _ _ _



.~~~~~~~~~~~ I~~~~~~~~~~~~~~~~ V’~~~~~

- a

SKO 1—May—79 15:45 47237
Command Summary

Selectors

FCADR Se l ec to r

a number in the current input mode radix

FCHARAC TER Selector

a single non—alphanumeric character

FVALUE Selector

an ex p ress ion

ID H Se lec to r

a number in the current input mode radix

MNVALUE Selector

an expression

MVALUE Selector

an expression

NEWFIL.ELINK Selector

an new file name string

N V A L U E  Se l ec to r

any text

OLDFILEL .INK Selector

an old (pre—existing) file name string

PNAME Selector

an expression that evaluates to an address

PNUMBER Selector

a number in the current input mode radix

Users ’ Guide to the Jovial Debugger

78

• - _______.

________________ -



- - - - -~~~~~~~~~~~~~~~ ------ - --.~~~~~~~-~~~~~~~~ -~~- ,-—--

SKO 1—May—79  15:45 47237
Comman d Summar y

Selec tors

R X V A L U E  Selec tor

a base ten number

SYMADR Selector

a number in the current input mode radix

TENEX— FILE—NA ME Selector

a full TENEX file name

Users ’ Guide to the Jovial Debugger 79

_ _i~~~ ~~~~~ •~~-, ---~-* .p- -  . ~~~ 
-~~~~~ UI% I~ I-al ~

•I-•
~~

•
~

_ _  _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
• -~~~~~~~~--~~~~~~~~~~~~~~~~~—



r 
------

~~~~~~~~~~~~~~~~~~~~~~

— ---

~~

- . - -
~~~~~~~~~~

- 
~~~~~~~

SKO 1 —May—79 15: 145 447237
Expression Evaluation

Expression Evaluation

User input expressions are evaluated in a left to right order
with no precedence of operators. LPARENCHA Rs and RPARENCHA Rs
(the default values of which are “(“ and “>“ , respectively)
can be used , to any practical depth , to group items to modify
the default evaluation.

If a value is not found for a specified symbol , then it is
looked up in the builtin opcode table , if and only if it is
the first symbol in the expression. If it is still not found
an error is generated .

Spaces may be used freely in an expression to increase
•

legibility. However , two identifiers separated only by spaces
will be assumed to be separated by a PLUSCHAR . -

The formal definition and semantics of an expression follows :

EXPRESSION :: HALFWO RD / ASSEMBLY / AR1TH

HALFWO RD := EXPRESSION “ ,,“ E X P R E SSIO N

Each expression will be evaluated and the resulting
right—halves of each expression will comprise the left—
and right— halves of the final expression.

ASSEMBLY :: OPCODE (REG— EXP ‘ ,) (‘€] tADR—EXP] (‘(
INDX—EXP ‘)]

This corresponds to the assembly language syntax for a
PDP— 1O. Note that each field (except the opcode field)
may itself be an expression.

OPCODE := an identifier in the builtin opcode table

RE G—EXP :: EXPRESSION

This expression will be evaluated and then the least
significant four bits will be placed in the register
field of the enclosing expression being evaluated .

A DR— EXP :~ EXPRESSION

This expression will be evaluated and then the least
significant eighteen bits will be placed in the address
field of the enclosing expression being evaluated .

IND X— EXP :: EXPRESSION

Users ’ Guide to the Jovial Debugger

80

~~~~~~~~~~~~~~~~~~~~ .:~~~
_ 

.~~~~~~~~~
. - - -a. ~~~~ *~~ *~*



-~~~~- - - -—~~ ~ _~~__J~~
-

~~~~ -~~~~ 
--- -

~~
— -

~~~ ~~~~—--

SKO 1 —May—79 15:11 5 47237
Ex press ion Ev aluation

This expression will be evaluated and then the least
significant four bits will be placed in the index
register field of the enclosing expression being
evaluated .

ARITH := TER M / TERM ADD-OP TERM

Basicall y , this is a sum of products (or if you rather a
product of sums).

TERM := IDENT / TERM MUL—OP TERM / LPARENCHAR TERM
RP A R ENC HAB

ADD—OP := PLUSCRAR / M INU SCHAR / one or m ore space s

MUL— OP :: TIMESCHAR / DIVIDECHAR

Users ’ Guide to the Jovial Debugger 81

t 
- - - - —~~~a~ -~~~~ ~~~~~~~~~~



-

_
~~~~~~~—~~~~~ — - -~~~~~-~~~~~ - -~~~~~ - —

~~~~

— - --

SKO 1—May—79 15:45 l47237
JOVIAL Tables

“‘-

p4

JOVIAL Tables

JDA D supports the JOVIAL table data structure. The Display
command can be used to display and modify data in JOVIAL
tables.

The Define command is used to give JDAD the description and
location of any JOVIAL table. The debugger has an internal
data structure to store JOVIAL table definitions. Each Define
command creates an entry for one table and all the items in
the table in this structure. Once an entry for a JOVIAL table
has been made in this structure , the table and/or items within
the table can be used in address lists in the Display command .
A formal description of the table and item definition text is
given in the section on the Define command . The definition
includes the name of the table , the name of each item in the
table , the dimensions of the table , the structure (parallel or
serial), the packing parameter and the location of the table .

When JDAD is parsing an address list , the occurrence of a left
parenthesis indicates to JDAD that a table or table item is
being referenced . This left parenthesis is the left delimiter
of the dimension list for the table or table item. A table is
referenced by the table name given in the Define command . An
item is referenced by the n a m e  of the table , followed by the
‘BLOCKCHAR character and the item name from the Define
command . The formal definition for a table and table item
address specification is given under Address Lists -— Formal
Definition in the Concepts section.

In the formal definition the DIMENSIONRANGE is defined as
follows :

DIMENSIONRANGE :: ( ‘ *  / N U M B E R  ‘ : NUMBER / NUMBER)

An asterisk in this context means to display all indices for
that dimension . If the DIMENSIONLIST consists of a single
asterisk , all indices of all dimensions are displayed. If a
dimension is specified with a single number , only that
specific index value of the dimension will be displayed. If a
range of numbers is specified for a dimension (i.e. NUMBER ‘ :

N UMBER ), the index values for the first number through the
second will be displayed.

Currently only Ordinary Tables are supported in the JOVIAL
debugger.

Users ’ Guide to the Jovial Debugger

82



SKO 1 —May—79 15:145 147237
Single Stepping

‘4

Single Stepping

if the user specifies an execution speed other than normal
speed (via the speed or continue commands), and specifies
single language instruction mod e, then JDAD should find the
JOVIAL instruction boundaries and single step at those
boundaries.

In order to do this , a JOVIAL program would have to be
compiled with the ISD (internal symbol dictionary) switch on
and JDAD would need to interpret the ISD. JDAD does not
currently include code to interpret the ISD.

Thus , it  you a re  s ing le  language  s t e p p i n g , a b reak  wi l l  occur
be fo re  every assembly  l anguage  i n s t r u ct i o n .

(

Users ’ Guide to the Jovial Debugger 83 

-—_ _ _

kH~~~~ 

- _ _
__ ‘_ ___-1

~ 

. 
- .

. 
-

— 
.
~~~~~

.-
— —---—-

-.—
~~

-—
-. — —— i—— .—~~ — — ‘— ~~~~

- -- --.- --•- ~~~~,— ~~~~~~~~~~~~~~~~~~ ~-~~~~~~~--- ---- ~~~—--- --~~~~--. . - -

SKO 1 —May—79 15:45 147237
Appendix I — Alphabetical List of Commands , Rules , and Selectors

‘4 Commands

Appendix I — Alphabetical List of Commands , Rules , and Selectors

Commands

“‘BSLASHCHA R” : page 62
“‘EQUALCHAB” : page 63
“‘E X C M A R K C H A R ” : page 64
“‘LARROWCHAR ” : page 68
“‘LFCHAR” : page 70
“ ‘LSQUARECHAR ” : page 65

“‘POUNDCHAR” : page 72
“‘QMARKCHAR ” : page 66
“‘SLASHC}jAR” : page 67
“‘TABC HAR” : page 71
“‘UPARROWCHAR” : page 69

Breakpoint Commands page 38
Breakpoint Set (at) BTADDBESS ~BOPT:
Breakpoint BTNUMBER Set (at) ~BTADDRESS #BOPT:
Breakpoint Clear (all) OK:
Breakpoint ~BTNU MBE R Clear OK :
Breakpoint Display (all) OK:
Breakpoint ~B T N U M B E R Dis pl ay OK :
Breakpoint ~B T NUM B ER ~BOPT1 :

Character Commands page 32
Character (set definitions) Display OK :
Character (set definitions) Use ~FCHABACTER (instead of)

#CHARRULE OK :

Comment ~CTEXT : page 31

Continue Commands page 143
Continue OK:
Continue At ~CNADDRESS OK:
Continue ~CNSPEED OK:
Continue At CNADDRESS #CNSPEED OK :
Continue OPTION (address for this process is) ~CNADDRESS

OK:

Debug (tool) €TOOL .SPEC OK : page 25

Define Table (table definition) ~TABLEDEFINITION (at
loc ation) D A D D R E SSLI ST ~ITEMRULE: page 46

Display ~DADDRESSLIST: page 48

Users ’ Guide to the Jovial Debugger

84

- -

—I- ~——— -.—-- gg. _
~._ L .a_a..~. .~

SKO 1—May—79 15:45 147237
Appendix I — Alphabetical List of Commands , Rules , and Selectors

Comman ds

Done (debugging tool) €ACT IVETOOLS OK: page 26

Find Commands page 50
Find Content €FSPEC (masked by) •MSPEC (in address list)

*F L D D R E SSLI ST
Fine Not (content) €FSPEC (masked by) •MSPEC (in address

list) ~FADDRESSLIST:
Find References (to) €FSPEC

(in address list) ~FA DDRES SLIST:

Free (core ava ilab le at) FCADR OK: page 45

Input Commands page 314
Input (mode) Display OK :
Input (mode) •INPTYP OK:

Interrupt Commands page 28
Interrupt Status (character should be) ~ICHARACTER OK:
Interrupt Executing (programs & abort o u t p u t cha rac te r

should b e) ~I C H A R A C T E R OK:

Mask Commands page 53
Mask Display OK:
Mask Set (to) ~MVALUE OK:
Mask Set (t o) OPTION (i n p u t m o d e) ~I N P T Y P (mask va lue)

MVALUE OK:

Memory (set to) •MNSPEC (in address list) ~MADDRESSLIST: ——
page 514

Output Commands page 56
Output (printing) Off OK:
Output (printing) Display:
Output (printing) To (file) ~NE WF I L E L IN K OK :
Output (printing) App end (to file) ~OLD FIL.ELINK OK:Output (printing) Both (to file and terminal) OK :
Output (printing) Solely (to) File (and not to terminal)

O K :
Output (printing) Solely (to) Terminal (and not to file)

O K :

Print Commands page 57
Print ~PADD R ES SLI ST :
Print (on f ile) NEWFILE L.INK PADDRE SSLIST :

Quit (debugging session) OK: page 27

User s ’ Guide to the Jovia l Debugge r 85

.~
- -

- .- --~~~ - .— - - - -
- ~~.__i ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ —-

- - - -

~~~~~~~~~ 

- - 

- - - -I-- 
~~~~~~~~~~~~ 

-.
~

-- _____

SKO 1— May—7 5 15:145 47237

4- Appendix I — Alphabetical List of’ Commands , R u l e s , and S e l e c t o r s
‘4 Commands

Speed C o m m a n d s page 61
Speed (of execution) Normal OK :
Speed (of execution) Single ~SPDRULE:

Status Commands page 30
Status OK :
Status Verbose OK:
Status For (tool) OK :
Status For (tool) ~IDH OK:
Status Verbose For (tool) OK:
Status Verbose For (tool) ~IDH OK:

Symbol Commands page 36
Sym bol (table) Display (status) OK:
Symbol (table) Display (status) Verbose OK :
Symbol (table) Display (status) Block OK:
Symbol (table) Display (status) Verbose Block OK :
Sym bol (table) Pointer (located at) ~SYM A DR O K :
Symbol (table) Pointer (located at) ~SYM AD R O P T I O N

- (undefined symbol table pointer
located at) SYMADR OK:

Symbol (table) Pointer (located at) OPTION (new pointer
at) ~SYMADR OK:

Symbol (table) Pointer (located •at) OPTION (new pointer
at) ~SYMADR OPTION
(undefined symbol c.able pointer
located at) ~SY MA D R OK:

Type ~DADDRESSLIST: page 59

Typeout Commands page 35
Typeout (mode) Display OK:
Typeout (mode) #OUTTYP OK:

Value (of) ~VADDRESSLIST : page 60

Us ers ’ Guide to the Jovial Debugger

86

—

~~~~~ ~~~__~ 
— — 

~~~~~~~±
-
~~ 4

-

5KG 1 —May—79 15:45 147237
Appendix 1 — Alphabetical List of Commands , Rules , and Selectors

R u l e s

Rules

ACTIVETOOLS Rule page 25
BASE Rule page 73
BCPT Rule page 41
BOPT1 Rule page ~4 i
CHARRULE Rule page 32

CNSPEED Rule page 43
DTERM Rule page 48
FSPEC Rule page 51
FTERM Rule page 51
ITMRUL Rule page 146
INPTYP Rule page 73

M N S P E C R u l e page 54
MCVRUL Rule page 75
MSPEC Rule page 51
MTERM Rule page 514
N V L R U L R u l e page 74

OUTTYP Rule page 73
PTERM Rule page 57
SPDCONT Rule page 75
SPOEXEC Rule page 76
SPDPROC Rule page 76

SPDRULE Rule page 75
SPDTYPE Rule page 16
TOOLSPEC Rule page 25
VTERM Rule page 60

Users ’ Guide to the Jovial Debugger 87

..-~-. ~~~~~~~~~~~~~~~~~~~~~~~~~~

~

_ _

a

SKC 1—May—79 15 : 145 147 2 3 7
A p p e n d i x 1 — A l p h a b e t i c a l L i s t of’ C o m m a n d s , Rules , and S e l e c t o r s

‘4 Selec tors

S e l e c t o r s

ADDRESSLIST Selector page 77
BRKCMNDS Selector page 77
BRNAME Selector page 77
BSVALUE Selector page 77

— BIADDEESS Selector page 77

BTNUMBER Selector page 77
CNADDRESS Selector page 77

• CSVALUE Selector page 77
CTEXT Selector page 77
DADDRESSLIST Selector page 48

FADDRESSLIST Selector page 51
FCADR Selector page 78
FCHARACTER Selector page 78
FVALUE Selector page 78
ICIiARACTER Selector page 28

IDH Selector page 78
MADDRESSLIST Selector page 544
MNVALUE Selector page 76
MVALUE Selector page 18
NEWFILELINK Selector page 78

NVAL UE Selec tor page 78
OLDFILELINK Selectcr page 78
PADDRESSL1ST Selector page 57
PNAME Selector page 78
PNUMBER Selector page 78

RXVALUE Selector page 79
SYMADR Selector page 79
TENEX— FILE—NAME Selector page 79

Users ’ Guide to the Jovial Debugger

_ _ _

_ _
-

‘4

-

. MISSION
-

of
Rame Air Development Center

- -
RA1)C P!~

af l6 and exeawte4 4e4eakch, deve~opme~vt, .te.4.t and
4 eLec.*ed acqwL~i2Lon pn. ogn.aIn6 .Ln ouppo ”..t o~ C onm%tnd, Con.t ’toe
Cormnun2ca.t~on6 and l~tte L~g ena e (C 31) v~L.ti..e& .

-~ and eng~Lnee.’r2ng 6 uppo ~~ wL.th.~n a.’~ea.~s o~ ~techn.&~aL c~ompe..tence
- . L~ p&ov~Lded to ESV P kog4arn 0~~Lce4 (P04) and o.theit ESV

e~emen~ts. The p~~nc~p c2 ~techtvcc2 raL~4~on a/tec.4 a~e
comman.LcLatLon6 , eZec.tiLomagne.tk gw~dan~e and aOVtt/LOL, 4UX-

- ~‘eLUance o~ g ’tou.nd and a.ej tO4pac.e obf ec. t&, ~n.teLUgence da~ta
- ~o!Lec..&ion and hanctUng, ~Ln~ o.tma.t~on 4~f 4.tem .tec.hnoL~ogy,

•~ono4p heJ4i.~C p J wpaga.t~on, 4oUd 4.ta.te 4c.~e.nce6 , rr~c&ounve
p hy~Ae~ and Zec.t ’Lon.u~ ‘Le Lzb i.Uty, mahvta.~nab.W.ty and

-
-

aompa.tü ,JJJ_.ty.

